Arc Length (formula explained)

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ก.พ. 2025

ความคิดเห็น • 272

  • @blackpenredpen
    @blackpenredpen  6 ปีที่แล้ว +310

    Minor picky mistake,
    *Please write "dL" instead of "dl".*
    Because when we integrate dL we will get L.
    While integral of dl is l.

    • @sairampatnaik1
      @sairampatnaik1 6 ปีที่แล้ว +9

      Ok sir

    • @sairampatnaik1
      @sairampatnaik1 6 ปีที่แล้ว +7

      @Tigc channel 2 why

    • @wikingandersson2561
      @wikingandersson2561 4 ปีที่แล้ว +2

      I have a question:
      Would it be possible for you to derive (show how on heavens earth) the formula of:
      Int sqrt (a^2-x^2) dx = x/2(sqrt a^2-y^2) - a^2/2(sin^(-1)(x/a))+c
      Hope I got it right. Found it in a table for a probkem I have but I am sooo lost in the integrationworld. Would be nice to see different derivations with some simple graphics on the board as well.
      Thank you sir, for your work, it is appriciated all over the world!

    • @luddelagerstedt6458
      @luddelagerstedt6458 4 ปีที่แล้ว +4

      dl also means decilitre :)

    • @sophiacristina
      @sophiacristina 4 ปีที่แล้ว +1

      What an amateur... Unsubbed >:(

  • @shaikhameerul
    @shaikhameerul 6 ปีที่แล้ว +256

    2:07 "And now, here is the dL.."

  • @YourPhysicsSimulator
    @YourPhysicsSimulator 6 ปีที่แล้ว +375

    Pythagoras is always here to solve our problems...

    • @keshavchaturvedi4015
      @keshavchaturvedi4015 4 ปีที่แล้ว +7

      Budhayana*

    • @fifiwoof1969
      @fifiwoof1969 4 ปีที่แล้ว +2

      Better that than Gougu!

    • @maxwellsequation4887
      @maxwellsequation4887 4 ปีที่แล้ว +7

      Thank you papa Pythagoras 🎉💐

    • @ahduiiiiiiiii
      @ahduiiiiiiiii 2 ปีที่แล้ว +1

      @@fifiwoof1969 bro it’s the same

    • @leonardobarrera2816
      @leonardobarrera2816 หลายเดือนก่อน

      HAHAHAHAAHAHAHAHAHAHAHAHAHAHA
      That is a nice joke
      (Seriously, I laght from this Joke)

  • @veilofmayaa
    @veilofmayaa 4 ปีที่แล้ว +53

    I can't tell you how happy I am to have come across your channel. Nobody has explained this concept as clearly as you have. It is so important to understand what the formula stands for and this is right on the money! Thank you so much!!

  • @garysnider5342
    @garysnider5342 ปีที่แล้ว +8

    It takes 7 seconds to skim the proof from the textbook. It took 7 minutes to understand the proof in this video. Absolutely worth it. Amazing job and thank you!!

  • @tyronekim3506
    @tyronekim3506 6 ปีที่แล้ว +55

    Very good explanation. I'm in disbelief that some people don't like it.

    • @lunam7249
      @lunam7249 4 ปีที่แล้ว +4

      Pathagorean’s!!! They don’t like anyone!!!

    • @faisalmohamed4595
      @faisalmohamed4595 ปีที่แล้ว +2

      Maybe because there were no questions on the vid?!
      But the video is still great tho

  • @kylearby2988
    @kylearby2988 ปีที่แล้ว +10

    You’ve helped me so much with my calculus class, you explain all of these complex subjects so well. Thank you!! I’ve subscribed!

  • @DeerPrince
    @DeerPrince 2 ปีที่แล้ว +3

    It's amazing that you explained in 6 minutes what my calculus teacher couldn't clearly explain in 1 hour.

  • @weerman44
    @weerman44 6 ปีที่แล้ว +70

    Love the intro. It's short and clear!

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว +9

      weerman44 thanks!!!!! It was done by Quahntasy!

    • @MarioPlinplin
      @MarioPlinplin 6 ปีที่แล้ว +2

      I was about to say LITERALLY the same lol

    • @weerman44
      @weerman44 6 ปีที่แล้ว

      @@MarioPlinplin Lol nice :D

  • @hikirj
    @hikirj ปีที่แล้ว +1

    I absolutely love your videos man. You are the best math TH-camr I know and recommend you to anyone I can.

  • @ZhihanYang-i1o
    @ZhihanYang-i1o 10 หลายเดือนก่อน +2

    Bro your video is so funny I kept smiling watching it - while learning a lot! Thanks!

  • @NinjaMartin
    @NinjaMartin ปีที่แล้ว +6

    So incredibly clear! Thank you so much for creating these fantastic videos ❤

  • @AnjaliSharma06
    @AnjaliSharma06 4 ปีที่แล้ว +2

    Amazing teachers like you make me love maths even more , thank you

  • @tsurutuneado5981
    @tsurutuneado5981 6 ปีที่แล้ว +3

    I was searching for a video like this some weeks ago, so happy you uploaded it, thank you

  • @gloystar
    @gloystar 6 ปีที่แล้ว +8

    Very nice video bro. I remember I did the exact same derivation when I was studying calculus, but then realized this derivation is in fact incomplete, because the pits of (dy) are not necessarily equal in length, but the pits of (dx) are, and I saw text books use the mean value theorem in their derivations to overcome that.

  • @blackpenredpen
    @blackpenredpen  6 ปีที่แล้ว +12

    New intro by Quahntasy! He is awesome and creative! Check him out th-cam.com/channels/tlaa8gywhvUdrcdYQf5QQQ.html

    • @quahntasy
      @quahntasy 6 ปีที่แล้ว +2

      Thanks again :)

    • @triton62674
      @triton62674 6 ปีที่แล้ว +1

      Very clear and concise video, good work!

  • @gordongorgy9148
    @gordongorgy9148 6 ปีที่แล้ว +17

    That intro is perfect

  • @ButterDJar
    @ButterDJar ปีที่แล้ว

    thank you so much, i saved so much time by understanding in just 5 minutes instead of reading a 5 page long of contents inside my textbook.

  • @jeanjulmis2347
    @jeanjulmis2347 2 ปีที่แล้ว +2

    That was very clear and concise. The textbook sometimes gets very confusing. Now, I can go back and read the textbook again on this chapter.

  • @hoodiedude4204
    @hoodiedude4204 6 ปีที่แล้ว +11

    Haha I worked out the same formula when I did this for fun once. Showed it to my professor and he showed it to the whole class.

  • @ZelForShort
    @ZelForShort 6 ปีที่แล้ว +2

    Perfect timing. Self teaching my self line integration and this is a great explanation for part of that crazy formula int(f(x(t), y(t))√((dx/dt)^2 + (Dy/dt)^2) dt

  • @Kevin-cy2dr
    @Kevin-cy2dr 4 ปีที่แล้ว +2

    You sir, deserve a medal. Great explanation 👍👌

  • @biswaruppramanik2007
    @biswaruppramanik2007 8 หลายเดือนก่อน +1

    Wow, you are doing a great a job by making us understand complex topics like these.🙂

  • @6612770
    @6612770 6 ปีที่แล้ว +45

    Excellent that you identified how the 'elemental length' is constructed in terms of the coordinate space. Getting this firmly grasped is key to tackling the 'bigger stuff' - circle, ellipse, spirals - then onto 3D with helix et al.
    Please use this episode as a launching point for a series, working upwards through the understanding/complexity of finding arc lengths 'from first principles'. That is what will make the "Aha!" Light Bulb come on in peoples heads and stay there forever.

    • @AbhishekSachans
      @AbhishekSachans 6 ปีที่แล้ว +6

      Exactly!!

    • @UntakenNick
      @UntakenNick 6 ปีที่แล้ว +7

      Yeah, I wish there were channels that teach math of physics at full depth starting from zero instead of just making use of that knowledge to do random stuff that require the view to already know the subject in order to understand what they're talking about.

  • @PhysicswithRoky
    @PhysicswithRoky ปีที่แล้ว

    Now, I can solve any problem regrading this. You made the basics. Thank you.

  • @mrman5066
    @mrman5066 ปีที่แล้ว

    Holy, this guy is brilliant! I've seen him once before but only at a glance. So glad I found this video, you don't need to tell me twice to subscribe.

  • @MrPeradjokic
    @MrPeradjokic 3 ปีที่แล้ว +2

    Good explanation and straight to the point. Thank you for the video!

  • @RSA_Shock
    @RSA_Shock 3 ปีที่แล้ว +1

    God I love your enthusiasm

  • @Towl35
    @Towl35 4 ปีที่แล้ว +2

    This is the simplest way I've seen it explained!

  • @calistairene998
    @calistairene998 3 ปีที่แล้ว

    loves the explanation, short and clear

  • @m.f.3347
    @m.f.3347 6 ปีที่แล้ว +7

    Lowkey flexing with the supreme 👀👀

  • @rob876
    @rob876 6 ปีที่แล้ว +12

    Thanks for this. Your explanations are brilliant. There's another case when x and y are parameterised.
    e.g. if you have the circle defined by x(s) = r.cos(s), y(s) = r.sin(s) and you want the arc length between s = 0 and s = 2π
    dl^2 = dx^2 + dy^2
    dx = dx/ds ds = -r.cos(s) ds
    dy = dy/ds ds = r.sin(s) ds
    so dl^2 = r^2 (cos^2(s) + sin^2(s)) ds^2
    dl = rds
    L = r∫[0 to 2π] ds = 2πr
    Please could you show us how to calculate the arc length of an ellipse? ( x(s) = a.cos(s), y(s) = b.sin(s) )?

    • @professorpoke
      @professorpoke 3 ปีที่แล้ว +1

      To find the complete arc length of an ellipse find the quarter arc length (using all positive values), and then multiply it by 4.

  • @aidanowens8766
    @aidanowens8766 ปีที่แล้ว

    You're awesome! I appreciate your enthusiasm!

  • @zubmit700
    @zubmit700 6 ปีที่แล้ว +3

    Could be fun with some arc battles.
    Also thank you for your videos.

  • @stevengaleano7759
    @stevengaleano7759 ปีที่แล้ว

    You just saved me bro. I love you!

  • @sardarmuhammad9254
    @sardarmuhammad9254 2 ปีที่แล้ว +1

    thank you for making this video .

  • @SempatikBalkc
    @SempatikBalkc ปีที่แล้ว

    best teacher ever

  • @alicia4940
    @alicia4940 3 ปีที่แล้ว

    Thank you so muchhhh😍😭 you‘re much better than my uni lecturer😍

  • @Bodyknock
    @Bodyknock 6 ปีที่แล้ว +2

    Seems like a natural followup would be when the curve L is a function over time t from time a to time b (e.g. F(t) = (sin(t), cos(t)) in the cartesian coordinates to describe a circular path) and looking at the integral over dt.

  • @indeedhid380
    @indeedhid380 4 ปีที่แล้ว +2

    high school me derived this formula while being in his dad's card and felt happy about it. lol.

    • @martinho5474
      @martinho5474 4 ปีที่แล้ว +2

      When i was 15 ( almost One year ago) when i was making theories when i was learning university maths at same time and i discovered a Proof to this formula implicitly ( by a diferencial infinite series), but i though i discovered a new thoery but then i realized that my formula is another Proof to this formula😂😂🤦🤦 i got euforic and then depressed after that

  • @bazzkiller1331
    @bazzkiller1331 6 ปีที่แล้ว +3

    Great video, well done! If I were you, I wouldn't use dx and dy at start, but *Δx* and *Δy* as they are not infinitesimal.

    • @JensenPlaysMC
      @JensenPlaysMC 6 ปีที่แล้ว

      well obviously he is assuming they are. just blown up for viewing purposes.

  • @evelinageorge2997
    @evelinageorge2997 ปีที่แล้ว

    Sir you know the importance of understanding 👍❤️

  • @nerfRitesh
    @nerfRitesh 5 ปีที่แล้ว

    Your videos are addictive

  • @Wafflecasa
    @Wafflecasa 4 ปีที่แล้ว

    You explain this perfectly. Thank you!

  • @notwhitzy
    @notwhitzy ปีที่แล้ว

    Best teacher
    You helped me a lot thank you!

  • @light-qn2jb
    @light-qn2jb ปีที่แล้ว

    fantastic explanation

  • @chyawanprash
    @chyawanprash 4 ปีที่แล้ว +1

    Wow, this is amazing!

  • @aizazhashmi9433
    @aizazhashmi9433 6 ปีที่แล้ว

    Thanks man.
    You made the topic so easy that every one can understand it...keep on making such videos...

  • @serjanholder2053
    @serjanholder2053 4 ปีที่แล้ว

    Thank you! Such a clear explanation! Also, the ball in your hand reminds me of the Ood, an alien species of the sci-fi show dr. Who.

  • @omarraafatt
    @omarraafatt 4 ปีที่แล้ว

    U'r so simple i liked that soo much❤️❤️❤️

  • @hyojupark4360
    @hyojupark4360 8 หลายเดือนก่อน

    Thank you so much!! you're a hero 💗💗💗💗👍

  • @ece_47_debajitpaul9
    @ece_47_debajitpaul9 4 ปีที่แล้ว

    Perfect explanation

  • @dharmanshah1239
    @dharmanshah1239 6 ปีที่แล้ว +8

    Nice intro!!

  • @xobieu
    @xobieu ปีที่แล้ว

    for anyone's confused at 3:54 why (dx)^2 + (dy)^2 = (dx)^2 * ( 1 + (dy)^2/(dx)^2) )
    since (dy)^2 = (dy)^2 . (dx)^2 / (dx)^2 (which is = 1) u can basically create a dx out of thin air. Then, obviously, we just need to factor the dx out
    (dx)^2 + (dy)^2 * (dx)^2 / (dx)^2 = (dx)^2 * ( 1 + (dy)^2/(dx)^2)

  • @DanielFrostable
    @DanielFrostable 4 ปีที่แล้ว

    Thank you! My book was not clear in how this formula came about.

  • @adarbarandalgic2730
    @adarbarandalgic2730 2 ปีที่แล้ว

    Great explanation.

  • @emontrailers
    @emontrailers 6 ปีที่แล้ว +1

    very good explanations

  • @king_noah_2692
    @king_noah_2692 3 ปีที่แล้ว +1

    3:54 I’m really confused about him factoring (dx)^2.

  • @CyberGamer1539
    @CyberGamer1539 4 ปีที่แล้ว

    This is easily the simplest way I've seen of deriving the formula.

  • @LwAcademia
    @LwAcademia 5 หลายเดือนก่อน

    Thank you sensei

  • @AnuragKumar-io2sb
    @AnuragKumar-io2sb 6 ปีที่แล้ว +2

    Wow😲😲 never thought of this

  • @Amine-gz7gq
    @Amine-gz7gq ปีที่แล้ว

    You rock man !

  • @abhiramijayan1716
    @abhiramijayan1716 3 ปีที่แล้ว

    Thank you so much..much effective 👍 and very clear

  • @Randomguy-vl6gi
    @Randomguy-vl6gi 5 ปีที่แล้ว

    Nice work

  • @DeLuini985
    @DeLuini985 4 ปีที่แล้ว +2

    Thank you so much. You reminded me of using Pythagoras everywhere 🤣

  • @ajeetkumar5453
    @ajeetkumar5453 5 ปีที่แล้ว

    Thanks a lot bro for your help.

  • @popodood
    @popodood 8 หลายเดือนก่อน

    After relearnijg little segments of math randomly it seems so simple each time lol, but it is hard to remember how to derive all these in the moment

  • @LukeGage-m9s
    @LukeGage-m9s ปีที่แล้ว

    Here is the "dL" lmao, great video!

  • @husklyman
    @husklyman 6 ปีที่แล้ว +4

    I wanna challenge you to find a way to calculate the integral that gave π(at least 2 digits) without calculators!!!
    And remember, before π discovered, you couldn't use it because...

  • @Ken-no5ip
    @Ken-no5ip 3 ปีที่แล้ว

    Amazingly simple

  • @MisterTomahawk22
    @MisterTomahawk22 6 ปีที่แล้ว

    Really nice formula !

  • @anilsharma-ev2my
    @anilsharma-ev2my 4 ปีที่แล้ว

    Can you found the equal area circle ?
    Radius is what so we found percentage of curve length between interval ?

  • @carcisme
    @carcisme 5 ปีที่แล้ว +2

    Medio entiendo el inglés, pero se entiende perfectamente lo que explicas. Gracias.

  • @UpekaSathsarani-p1t
    @UpekaSathsarani-p1t ปีที่แล้ว

    thank you so much sir ❤❤

  • @jimschneider799
    @jimschneider799 2 ปีที่แล้ว +1

    3.5 years late, but... There's also the case when x = f(t), y = g(t). In that case, you need to use the "substitutions" dx = (dx/dt) dt and dy = (dy/dt) dt (these aren't really substitutions, in a rigorous sense, but the symbolic manipulation works, so...). This gives dL = sqrt(f'(t)^2 + g'(t)^2) dt, where the derivatives are taken with respect to t, and the limits of integration will be from the initial value of t to the final value of t.
    Now for a question of my own: are my comments helpful, or am I just coming across as a smarmy little know-it-all?

    • @mr.raj1.618
      @mr.raj1.618 ปีที่แล้ว +1

      I read ur comment 1 year ago but at that time I was unable to understand what about u discussed but it was looking me something helpful so I took screenshot and move on but today when I faced a similar problem then reminds me something that u said so, then I go back to my year ago screenshot list and after reading ur comment again, I realize that the problem I'm faced today , u have explained already a year ago so, my happiness forced me to come here again and thanking u but this time I'm here just for u ,So thanks a lot .....dear.

  • @kono152
    @kono152 2 ปีที่แล้ว +1

    could you make a video deriving the arc length for polar curves too?

  • @johnny_eth
    @johnny_eth 5 ปีที่แล้ว

    It would be cool for you to demonstrate the arc length formula with a practical example, like the arc length of the semi circle (x**2+y**2=r**2) and then resolving to pi.

  • @kohi_kohi
    @kohi_kohi 7 หลายเดือนก่อน

    Love the Doraemon theme in the background

  • @rorycarter6948
    @rorycarter6948 ปีที่แล้ว

    I keep thinking he’s saying “this is the deal..”😂

  • @professorpoke
    @professorpoke 3 ปีที่แล้ว

    2:47 , the limits would be { 0 to L }

  • @adnanchallawala5635
    @adnanchallawala5635 4 ปีที่แล้ว +1

    Why is the arc length equal to integral of dL? Shouldn’t an integral give area?

    • @thezoz9476
      @thezoz9476 4 ปีที่แล้ว

      Integrating sums all the tiny DLs which make up the length
      Why not area i think because we restricted dx and dy, by Pythagoras's theorem to be a length of a hypotenuse which length because tiny as dx approaches 0

  • @medchs
    @medchs 4 ปีที่แล้ว +1

    isn't L = integ (from 0 to 1) dL ?
    or from n to n+1 ?

  • @maxhaibara8828
    @maxhaibara8828 6 ปีที่แล้ว +31

    Say "ruler" 10 times in a row

  • @jarikosonen4079
    @jarikosonen4079 4 ปีที่แล้ว +1

    Can you make this for 3D-curve? This must be correct formula, but its not easy to figure out why result is length rather than area.

  • @avery_IO
    @avery_IO 4 ปีที่แล้ว

    dope shirt @blackpenredpen

  • @rafaellisboa8493
    @rafaellisboa8493 6 ปีที่แล้ว +1

    wooow this was awesome mind blown comrade

  • @h4c_18
    @h4c_18 6 ปีที่แล้ว +1

    And if you have x(t) and y(t) you do the integral sqrt((dx/dt)^2+(dy/dt)^2)dt from t_a to t_b? Ex: x(t)=e^t * cos(t) and y(t)=e^t * sin(t) from 0 to Pi/2

  • @arnabchowdhury4892
    @arnabchowdhury4892 ปีที่แล้ว

    Please derive surface area of cone, cylinder, sphere using surface integral around axis of rotation

  • @albertohart5334
    @albertohart5334 3 ปีที่แล้ว

    2:22 “anyway here’s the deal”
    2:24 “this is the ‘d L’ “

  • @algirdasltu1389
    @algirdasltu1389 8 หลายเดือนก่อน

    Its always pythagoras that shows up everywhere, even when you dont expect it...

  • @vakhariyajay2224
    @vakhariyajay2224 3 ปีที่แล้ว +1

    Thank you very much. 👍👍🔝🔝

  • @ЮрійЯрош-г8ь
    @ЮрійЯрош-г8ь 6 ปีที่แล้ว +6

    Thanks for the video, but now, what about the ellipse or circle?

    • @zerglingsking
      @zerglingsking 6 ปีที่แล้ว +4

      I think you can separate the problem is other smaller problems, for example the length of the circle is 4 times the quarter or the circle which you know is y=sqrt(1-x^2) for example. For the parabola, you have the expression of f(x)=y if you know a few points so it shouldn't be too much of a problem. For other cases like the circle where you have 2 or more images for a single x or y value, just split the problem in several little curves you can then add up and it shouldn't be too hard after this if you know the formula of the curves

  • @thbb1
    @thbb1 ปีที่แล้ว

    great explanation, but could you follow up with a practical example, for instance, computing the arclength of sin(x) between 0 and pi?

  • @Fru1tyy
    @Fru1tyy 6 ปีที่แล้ว +1

    I tried the arc length of sin x but I can’t evaluate the integral . Internet says that it is an elliptic intergal, so now I’m wondering what’s an elliptic integral.

  • @mcchillx
    @mcchillx 9 หลายเดือนก่อน

    thank you very much

  • @rohitsk4018
    @rohitsk4018 4 ปีที่แล้ว

    Very very good
    Thank you sir

  • @mihajlovucic8037
    @mihajlovucic8037 6 ปีที่แล้ว +1

    Hi, Blackpenredpen.
    I like your videos and I learned a lot about calculus in your videos (although I'm 15, and we don't do it in school yet :))
    I am interested in limits, so I found this one: lim (n-->inf) 4/n*(sqrt(2/n-1/n^2)+sqrt(4/n-4/n^2)+sqrt(6/n-9/n^2)+sqrt(8/n-16/n^2)....+sqrt(2k/n-k^2/n^2)...). Can you compute it? (You can put it in sigma calculator to see how interesting it is)

    • @lunam7249
      @lunam7249 4 ปีที่แล้ว

      Excellent work young man!!

  • @oneworldT1
    @oneworldT1 ปีที่แล้ว

    Thanks sir .

  • @matthewkim705
    @matthewkim705 4 ปีที่แล้ว

    why do you take the positive root of (dx)^2 when you are taking it out of the square root?

  • @undeadpresident
    @undeadpresident ปีที่แล้ว

    So how can this be applied to find the arc length on a circle from one x-coordinate to another?