Can you solve these 3 calculus tiebreakers the fastest? (2023 Berkeley Math Tournament)

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ม.ค. 2025

ความคิดเห็น • 102

  • @blackpenredpen
    @blackpenredpen  3 หลายเดือนก่อน +7

    If you are participating in the BMT and you want to honor your coach, then apply for the BMT x BPRP Student Mentor Appreciation Scholarship here: berkeley.mt/news/black-pen-red-pen-award/

  • @randomjin9392
    @randomjin9392 3 หลายเดือนก่อน +98

    The last sum can be cheesed neatly. For n = 0 we have n³/n! = 0, so we can start with n = 1 and then reduce: n³/n! = n²/(n-1)! therefore reducing the power by 1. We then go with n-1 = k which is legit since now n starts at 1. We then get ∑(k+1)²/k! starting with k = 0. This is same as ∑k²/k! + 2∑k/k! + ∑1/k!. The last one is just e, the one in the middle is also e: discard k = 0 term (it's 0) and reindex. As for the first: we just do the same trick with power reduction again, finding it's 2e. So ∑n³/n! = 2e + 2e + e = 5e

    • @deinauge7894
      @deinauge7894 3 หลายเดือนก่อน +4

      or in a different way: by differentiating x e^x three times we get Sum(n^3-n)x^n/n!

    • @gargisharma6697
      @gargisharma6697 3 หลายเดือนก่อน +2

      this question was in my notes copy, im literally in 11th grade

    • @mfol2374
      @mfol2374 3 หลายเดือนก่อน +1

      Yeah, also solved in this way. Much simplier )

    • @Osirion16
      @Osirion16 2 หลายเดือนก่อน +1

      I did it the same way !

    • @anastasissfyrides2919
      @anastasissfyrides2919 2 หลายเดือนก่อน

      i was looking for this comment, this approach looked obvious to me

  • @kornelviktor6985
    @kornelviktor6985 3 หลายเดือนก่อน +26

    3:45 no way, I'm in the video. It makes me so happy😊. Very clever solution btw

  • @IamExeller
    @IamExeller 3 หลายเดือนก่อน +11

    Please don't retire so soon, you're a rare and excellent internet teacher.

  • @moazamabbasi1899
    @moazamabbasi1899 3 หลายเดือนก่อน +23

    Hi. I solved the integral problem myself. I am in University, I saw your notification, slide it down, and started solving on my Tablet. In a nutshell I found the answer(1-π/4), when I Rechecked, it matches your answer. Very Happy.🎉😊❤

    • @IamACrafter
      @IamACrafter 3 หลายเดือนก่อน +1

      my unborn child could do this question without a tablet. in its sleep.

    • @mohammadfahrurrozy8082
      @mohammadfahrurrozy8082 3 หลายเดือนก่อน +1

      congrats bro! its good to see another person who got excited after solving an integral like me (for the original comment)
      nobody asked (for the reply above me)

    • @moazamabbasi1899
      @moazamabbasi1899 3 หลายเดือนก่อน

      @@mohammadfahrurrozy8082 yup.

    • @YoungPhysicistsClub1729
      @YoungPhysicistsClub1729 2 หลายเดือนก่อน

      @@IamACrafter fr, just rationalise it

  • @PRABALBAISHYA-xi1fd
    @PRABALBAISHYA-xi1fd 3 หลายเดือนก่อน +6

    limits talk about the limiting behaviour, for the 1st problem its important to note that arctan x ~x as x approaches 0.( similar to sinx) so for extremely small values of x the expression reduces to 1/2, cubing it we get 1/8. The knowledge of limiting behavior saves us from the hazarad of blindy applying the differentiation rule all the times.

  • @MyzticF
    @MyzticF 3 หลายเดือนก่อน +12

    Managed to solve all of them with relative ease - super fun exercise

  • @SlipperyTeeth
    @SlipperyTeeth 3 หลายเดือนก่อน +6

    For the last one, you can just aim to cancel the largest term of the factorial and then add and subtract the same value to cancel the next largest term, etc. until you only have constants in the numerator.
    I'll skip the bookkeeping of the index of the sum, but it works out with the first term always being 0 - allowing you to shift things up as needed and sticking to the factorial of natural numbers. Here is the math for the summand:
    n^3/n! = n^2/(n-1)! = (n^2-1+1)/(n-1)! = (n+1)(n-1)/(n-1)! + 1/(n-1)! = (n+1)/(n-2)! + 1/(n-1)! = (n-2+3)/(n-2)! + 1/(n-1)! = 1/(n-3)! + 3/(n-2)! + 1/(n-1)! = 1*e +3*e + 1*e = 5e.

    • @ars7595
      @ars7595 3 หลายเดือนก่อน

      Noiiiiiiiceee

  • @bot24032
    @bot24032 3 หลายเดือนก่อน +6

    The last one can also (somewhat tediously) be solved by changing the numerator such that it as much as possible with the denominator (n³=n(n-1)(n-2)+3n(n-1)+n lets you split the sum into multiple ones, all related to sum of 1/n! from 0 to infty; one should also take the first two terms out before doing that to not cause negative number shenanigans)

  • @Stranger-oy3iy
    @Stranger-oy3iy 3 หลายเดือนก่อน +114

    there are too many e's

    • @sigmagamer111
      @sigmagamer111 3 หลายเดือนก่อน +1

      😂

    • @fifiwoof1969
      @fifiwoof1969 3 หลายเดือนก่อน +4

      5 of them

    • @kartikvyas3384
      @kartikvyas3384 3 หลายเดือนก่อน

      😂

    • @programmingpi314
      @programmingpi314 3 หลายเดือนก่อน

      My solution is several times faster and easier, and it only even mentions e in the final answer.

    • @Sphinxinator
      @Sphinxinator 3 หลายเดือนก่อน

      @@programmingpi314 can I see it?

  • @Silver-cu5up
    @Silver-cu5up 3 หลายเดือนก่อน +4

    YEEESSSSS, conjugating and using the area of a partial circle is the best and fastest way to solve it!!!!

    • @fxrce6929
      @fxrce6929 3 หลายเดือนก่อน +1

      hello Mr sexy speed integrator

    • @Silver-cu5up
      @Silver-cu5up 3 หลายเดือนก่อน

      @@fxrce6929 oh shizz wasabi!! xD

  • @megazebra228
    @megazebra228 3 หลายเดือนก่อน +1

    Thank you!

  • @proximitygaming8253
    @proximitygaming8253 3 หลายเดือนก่อน +5

    Probably a useless observation, but #3 can be expressed as something like 1/k! times the convolution of the sum of (k-n)^3 and the sum of the gamma function, taking its limit as k --> ∞.

  • @scottleung9587
    @scottleung9587 3 หลายเดือนก่อน +2

    Nice job!

  • @yehonathanshapira7090
    @yehonathanshapira7090 3 หลายเดือนก่อน +1

    You can also solve the last sum using power series and solving the deferential equations you get from it

  • @taranmellacheruvu2504
    @taranmellacheruvu2504 2 หลายเดือนก่อน

    I did problem 1 a bit differently:
    For problem 1, if you take the cube out and write the limit as 1 over its reciprocal, you get the cube of the limit of 1/(1 + x/arctan(x)). We know tanx/x goes to 1 as x->0, i.e. tan(x) is approximately x. Then arctan(x) is also approximately x in the limit, so the original limit becomes (1/(1+1))^3 = 1/8.

  • @frankezendam5409
    @frankezendam5409 3 หลายเดือนก่อน

    Question nr 2 you can also use X=sin(t) which will lead to ∫cos(t)- (cos(t))^2 use the double formula for the second part and fill in π/2 and 0 which will give 1-π/4

  • @ikarienator
    @ikarienator 3 หลายเดือนก่อน

    note that sum(n(n-1)...(n-k)/n!) is always e, then write n^3 as n(n-1)(n-2) + 3n(n-1)+n, you immediately get the result 5e.

  • @wargreymon2024
    @wargreymon2024 3 หลายเดือนก่อน +1

    The last one is 🤯🤯🤯🤯

  • @Metaverse-d9f
    @Metaverse-d9f 3 หลายเดือนก่อน

    3. use the expansion of e^x to do(d/dx→*x)3 times, and plug-in x=1 will finish it.

  • @netanelkomm5636
    @netanelkomm5636 2 หลายเดือนก่อน

    7:58 Siri trying to beatbox:

  • @anarchosnowflakist786
    @anarchosnowflakist786 3 หลายเดือนก่อน +1

    great video thanks ! the solutions seem so obvious once you've shown them

  • @seaassasin1855
    @seaassasin1855 3 หลายเดือนก่อน +1

    The third one is the most intuitive tbh, you only need to know the fact that the sum from 0 to infinity of 1/n! =e

  • @lostrxses
    @lostrxses 3 หลายเดือนก่อน +1

    8:15 so now we can take the derivative.. so now we can take the derivative

  • @alexkaralekas4060
    @alexkaralekas4060 3 หลายเดือนก่อน +2

    Number 3 can be solve using touchard polynomial

  • @Betterthanbaybay1234
    @Betterthanbaybay1234 3 หลายเดือนก่อน +2

    3:03 Please teach me how you solve that

  • @dayingale3231
    @dayingale3231 3 หลายเดือนก่อน

    In the first one i just divided up and down by arctan and use that x/arctan x tends to 1

  • @CalculusIsFun1
    @CalculusIsFun1 3 หลายเดือนก่อน

    I find it hard to believe these are Berkeley math tournament questions. I don’t even do math competitions (too stressful) and yet I still managed all three in a combined time of 4 minutes.
    The limit was easy, the integral was something an algebra student could do (if they understood what the question was asking, which they probably wouldn’t. My point being it’s mostly area of a circle.), and the final one looks so close to the Taylor series definition of e^x it’s bound to set off alarms for anyone who’s taken calculus II.

  • @CamiKite
    @CamiKite 3 หลายเดือนก่อน

    Another easy way to solve the last sum is to play with the developpement of exp(x) to show that sum(x^n*n^3/n!)=d/dx (x*d/dx (x*exp(x)))=exp(x)*(1+3x+x^2)

  • @Dr.1.
    @Dr.1. 2 หลายเดือนก่อน

    awesome video

  • @Physicalchemistry15151
    @Physicalchemistry15151 2 วันที่ผ่านมา

    2:08 I tried doing this problem on my own and trying to use trig sub😢

  • @saf-q1p
    @saf-q1p 3 หลายเดือนก่อน

    Sir can you do integral tan^-1(sqrt(x+1)) using D I method

  • @blauornuo7060
    @blauornuo7060 3 หลายเดือนก่อน

    thanks

  • @paulveba6225
    @paulveba6225 2 หลายเดือนก่อน

    I know your channel is huge, but I thought it was so cool that you can be identified by Akinator(the game).
    Thanks for doing what you do like always!❤

  • @wongmanwaihehe
    @wongmanwaihehe 2 หลายเดือนก่อน

    3:42 I just watched it literally 5 minutes ago 😂

  • @hectorminec
    @hectorminec 3 หลายเดือนก่อน +1

    4:32 how is that true for x=0?

    • @blackpenredpen
      @blackpenredpen  3 หลายเดือนก่อน

      You would get 1=1, with the convention that 0^0=1 in power series and 0!=1

  • @Elprofium
    @Elprofium 3 หลายเดือนก่อน

    i saw wwangs solution few days ago, but this is brilliant

  • @antonello123able
    @antonello123able 3 หลายเดือนก่อน

    For (1): recall arctan(x)~x, when X->0: you immediately get the result. 😊

  • @ShikharGupta-tn9wp
    @ShikharGupta-tn9wp 3 หลายเดือนก่อน +3

    Bring some more fun and hard problems....
    HERE IS A QUESTION FOR YOU!
    Find the sum of all the subsets from the set {1,2,3,4........2020} for which sum of their elements is divisible by 5.
    IT'S SUPER INTERESTING PROBLEM!!!

    • @zimamalmuntazir6258
      @zimamalmuntazir6258 3 หลายเดือนก่อน +1

      I know that you got this question from 3b1b the only difference is yours is upto 2022 and he's was 2000 and i believe he's answer was
      1/5(2^2000+4×2^400) so yours will be 1/5(2^2020+4×2^404)

    • @ShikharGupta-tn9wp
      @ShikharGupta-tn9wp 3 หลายเดือนก่อน +1

      @@zimamalmuntazir6258 yeahh...
      RIGHTT!!
      IT WAS A WONDERFUL SOLUTION!

  • @cdkw2
    @cdkw2 3 หลายเดือนก่อน +4

    man if only india had these, it would be so epic!

  • @Leticia-un8sp
    @Leticia-un8sp 3 หลายเดือนก่อน

    I didn't get why d(e^nx/n!)/dx = ne^nx/n! and the 1/n! factor wasn't part of the diferentiation

  • @kushagraverma7158
    @kushagraverma7158 2 หลายเดือนก่อน

    Please clarify. dy/dx Can be written as Dy. That means D=d/dx. My questions: does D in general means d/dx or it means d/dx because y=f(x)

  • @CubeRex_
    @CubeRex_ 3 หลายเดือนก่อน +2

    Literally did in mind (JEE aspirant) first I simplified it as n^2/(n-1)!
    Then wrote it as n^2-1+1/(n-1)! Then it is n+1/(n-2)! +1/(n-1)! Which is 1/(n-3)! +3/(n-2)! +1/(n-1)! And its sum is 5e

  • @Metaverse-d9f
    @Metaverse-d9f 3 หลายเดือนก่อน

    b/c when x goes to 0, x/arctanx=1, expression=[1/(1+1)]^3=1/8

  • @yuhyuh22
    @yuhyuh22 15 วันที่ผ่านมา

    Could do 1 and 2 relatively easy but the third one had me tripping

  • @ShenghuiYang
    @ShenghuiYang 3 หลายเดือนก่อน

    Very interesting infinite sum. This is related to OEIS A000110.

  • @evancisolomon2930
    @evancisolomon2930 2 หลายเดือนก่อน

    I've solved your equation like 1^x = 2 without seeing your video (by seeing just question) . But I got only principal value, i.e, without getting any "n" on my answer. Could you please tell me, is it necessary to get only general solutions?

  • @awoomywang
    @awoomywang 3 หลายเดือนก่อน

    Banger questions

  • @Kotuseid
    @Kotuseid 3 หลายเดือนก่อน

    which grade are these questions for

  • @vata7_
    @vata7_ 3 หลายเดือนก่อน +2

    i wonder will you be able to do it, but, let's say we have f(x)=2^x, and g(g(x))=f(x), what's g(x)?

    • @Anmol_Sinha
      @Anmol_Sinha 3 หลายเดือนก่อน

      Let f^1/2(x) = g(x)
      To find g(x)
      So f(x) = g^2(x)
      Put in equation you provided:
      g(g(x)) = g^2(x)
      Put t = g(x)
      g(t) = t²
      Reuse variable x (cuzwe need g(x))
      Put t = x
      g(x) = x²
      I am assuming that g(x) is bijective here

    • @vata7_
      @vata7_ 3 หลายเดือนก่อน +1

      @@Anmol_Sinha f(x) is equal to 2^x, not x^2, and if you'll put x² into f^1/2(f^1/2(x)), you'll get f^1/2(x²) and then x⁴, not 2^x

    • @chinmay1958
      @chinmay1958 3 หลายเดือนก่อน

      first of all what is f^1/2(x)? is it the square root of f(x)? or just a different function altogether?

    • @vata7_
      @vata7_ 3 หลายเดือนก่อน +2

      @@chinmay1958 yeah, you can consider it as different function, as i said, f^1/2(f^1/2(x))=f(x), how √f(√f(x)) can be always equal to f(x)? lol

    • @deinauge7894
      @deinauge7894 3 หลายเดือนก่อน

      i've atempted a similar question for a while: finding a continous version of f^n(x) where f(x)=e^x. (continous in n).
      Then i found that some guy named Kneser did this decades ago, but the solution is behind paywalls...

  • @ValidatingUsername
    @ValidatingUsername 2 หลายเดือนก่อน

    Sum(n^3)*Sum(1/n!) = Sum 1/(factor)(n-3)!

  • @AlyoshaK
    @AlyoshaK 3 หลายเดือนก่อน

    I went to Cal. The math professors there are murder. They do this kind of thing for fun and most problems were much worse than these, and took quite some time for the teaching assistants to explain. A lot more time than this video. We poor science and engineering students never had it so rough.

  • @zhabiboss
    @zhabiboss 3 หลายเดือนก่อน +1

    The last one is just EEEEEEEE

  • @Denis-bu4ri
    @Denis-bu4ri 3 หลายเดือนก่อน +2

    Would you like to spend 5 hours solving hard integrals?

  • @holyshit922
    @holyshit922 2 หลายเดือนก่อน

    3.
    sum(x^n/n!,n=0..infinity) = exp(x)
    sum(nx^n/n!,n=0..infinity) = x*exp(x) (by differentiation once and shifting)
    sum(n^2x^n/n!,n=0..infinity) = x*d/dx(x*exp(x)) = x*(x+1)exp(x)
    sum(n^3x^n/n!,n=0..infinity) = x*d/dx((x^2+x)*exp(x))
    sum(n^3x^n/n!,n=0..infinity) = x*((2x+1)*exp(x)+(x^2+x)exp(x))
    sum(n^3x^n/n!,n=0..infinity) = x*(x^2+3x+1)exp(x)
    and then if we plug in x=1 we will get 5e

  • @Mediterranean81
    @Mediterranean81 3 หลายเดือนก่อน

    The +C

  • @biscuit_6081
    @biscuit_6081 3 หลายเดือนก่อน

    For the first question I just said "sin=x, tanx=x and tan inverse(x) =x. Hence (x)/(x+x) so 1/2 and 1/2^3 = 1/8 😂

  • @tongabonga
    @tongabonga 3 หลายเดือนก่อน +1

    😁😁 interesting problems

  • @giuseppemalaguti435
    @giuseppemalaguti435 3 หลายเดือนก่อน

    3)...derivo 2 volte e^x=Σx^n/n...S=2e+6...no,ho rifatto i calcoli S=5e

  • @programmingpi314
    @programmingpi314 3 หลายเดือนก่อน

    Why did he solve such an easy problem in a ridiculous overcomplicated way?

  • @henry55
    @henry55 3 หลายเดือนก่อน +2

    hello !!!!

  • @chitralekhakumari2842
    @chitralekhakumari2842 3 หลายเดือนก่อน +1

    INDIANS ATTENDANCE HERE 😂😂
    👇

  • @robertszuba3382
    @robertszuba3382 3 หลายเดือนก่อน

    👍

  • @ferashamdan4252
    @ferashamdan4252 2 หลายเดือนก่อน

    رائع

  • @Kishblockpro
    @Kishblockpro 2 หลายเดือนก่อน

    1.3 million subs but 23k views... sad

  • @TlSoul-x1t
    @TlSoul-x1t 3 หลายเดือนก่อน +1

    1st view 😊