Gravitational Potential is NOT mgh!!!

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ธ.ค. 2024

ความคิดเห็น • 9

  • @jordan4786
    @jordan4786 5 หลายเดือนก่อน +1

    came from your hohmann transfer looking through a par-e light problem I was having.... I was throwing be-borlie, hisinberg, boltsman and showdinnger lol. but this and your vid on hohman transfer really helped

  • @brendanfan3245
    @brendanfan3245 2 ปีที่แล้ว +5

    in your video, there 2 potential energy formulas: U=mgh and U=-GMm/r. you should show your reader that, the first one is based on setting the surface of the earth as zero point, (of course, it is approximate as it uses g = GMm/R2 to replace GMm/(R+h)xR while the second one set zero at infinity far. This is the key point of the calculation.

    • @INTEGRALPHYSICS
      @INTEGRALPHYSICS  2 ปีที่แล้ว

      You bring up a good point. I left out the zero point for U=mgh because if using that fxn, you can choose any point to be zero, not just the ground level. However I certainly could have got to the point faster at the end when discussing the zero point for U=-Gmm/r as well as leading into escape velocity.

  • @jeromejoseph42
    @jeromejoseph42 3 ปีที่แล้ว +3

    great video👌🏿

  • @graduxx4744
    @graduxx4744 ปีที่แล้ว

    so basically it’s Fg.h but h is r and Fg is the Newton’s law form Fg = -GMm/r2 and so Ug = -GMm/r right ? no need to use integral or stuff

    • @INTEGRALPHYSICS
      @INTEGRALPHYSICS  ปีที่แล้ว

      Essentially. The only use of the integral is to show the relationship between Fg and Ug.
      But BE CAREFUL, unlike with mgh, you cant just plug in a change in height for h, you have to evaluate Ug at two different r's.

  • @mizar_copernicus138
    @mizar_copernicus138 ปีที่แล้ว

    so basically it is Fg.h after all

    • @INTEGRALPHYSICS
      @INTEGRALPHYSICS  ปีที่แล้ว

      Only if you are lifting something an infinitely small distance.