Lecture 7: Sigma Algebras

แชร์
ฝัง
  • เผยแพร่เมื่อ 12 พ.ย. 2024

ความคิดเห็น • 16

  • @SSNewberry
    @SSNewberry ปีที่แล้ว +4

    This mainly about definitions and the intricacies of proving what seems to be obvious but is not. Extremely fine attack.

  • @aaronrobertcattell8859
    @aaronrobertcattell8859 ปีที่แล้ว +6

    An abbreviation is a shortening of a word or a phrase. An acronym is an abbreviation that forms a word. An initialism is an abbreviation that uses the first letter of each word in the phrase (thus, some but not all initialisms are acronyms).

  • @cristianismopuroesimples5302
    @cristianismopuroesimples5302 ปีที่แล้ว +4

    Excelente, quem estuda análise bayesiana, é imprescindível aprender sigma-algebra

  • @coreconceptclasses7494
    @coreconceptclasses7494 ปีที่แล้ว +7

    Plz upload complex analysis.

  • @kingarth0r
    @kingarth0r 10 หลายเดือนก่อน +8

    Alpha algebras are afraid of sigma algebras

  • @fierydino9402
    @fierydino9402 ปีที่แล้ว +1

    Thank you.

  • @carl3260
    @carl3260 7 หลายเดือนก่อน

    100:28 is it simpler to say E \in A => E^c \in A, so R = E u E^c \in A, so ø = R^c \in A ? (i.e. more direct from initial axioms)

  • @sunritroykarmakar4406
    @sunritroykarmakar4406 5 หลายเดือนก่อน

    Instead of the compactness argument at 21:00 why cant we consider (a + e/2 , b- e/2) is a subset of I so the lower bound on the outer measure of I is b-a - epsilon

    • @komorebireed4714
      @komorebireed4714 4 หลายเดือนก่อน

      I got the same confusion. For a finite interval, regardless of whether it is closed, open, or half-closed, it seems sufficient to prove that m^*(I) = \ell(I) by [a+e/2, b-e/2] \sub I \sub [a-e/2, b-e/2].

  • @tuongnguyen9391
    @tuongnguyen9391 2 ปีที่แล้ว +2

    I thought this was some measure theory stuff :))) but some how it goes into functional analysis

    • @BigFish-ii8zd
      @BigFish-ii8zd ปีที่แล้ว

      This is pure measure theory, not functional analysis. I'm not sure why you are saying this "goes into functional analysis".

    • @frankchen4229
      @frankchen4229 ปีที่แล้ว +3

      ​@@BigFish-ii8zdffs....Open the description slot....

    • @freeeagle6074
      @freeeagle6074 11 หลายเดือนก่อน

      Everything in maths is functional.

  • @joenissan
    @joenissan ปีที่แล้ว

    Exactly what is this used for? When would this be used in life?

    • @TheTacticalDood
      @TheTacticalDood ปีที่แล้ว +10

      This is building up for the Lebesgue integral which is used everywhere. Proability theory is a big application for instance.