σ-algebras | [generated; partition; Borel]-sigma-algebras & much more

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 พ.ย. 2024

ความคิดเห็น • 20

  • @علاءعبدالامير-ه8و
    @علاءعبدالامير-ه8و 2 ปีที่แล้ว

    Prove the excision property for the outer measure m∗
    , that is
    “If A is a measurable set and B ⊇ A, then prove
    m∗
    (B \ A) = m∗
    (B) − m∗
    (A).”
    (Note that B \ A is the set minus {x ∈ B : x /∈ A}.are you can solve it

  • @virtus2936
    @virtus2936 3 ปีที่แล้ว +1

    Hi, can you show me how to prove the σ-alg. over countable sets at 11:30 ? Thank you

  • @tomijantunen9992
    @tomijantunen9992 4 ปีที่แล้ว +1

    Watched the introduction video and halfway to this one. I'm a bit interested in probability so this series seemed like something that would interest me. Still liking your explanations! One thing I've noticed: You use the ping cursor a lot, I wonder if it is always needed. I'm watching on a big screen so I don't really need it almost at all. Maybe you can try various ways but maybe when you are reading a definition it would suffice that you ping at the first word and then glide he cursor across the words as you read them instead of pinging every word?

    • @forty-moo3385
      @forty-moo3385  4 ปีที่แล้ว

      Thank you for your feedback! Maybe I will try to use the ping cursor a little less (especially if there is a lot of text on the screen).

  • @tsunningwah3471
    @tsunningwah3471 หลายเดือนก่อน

  • @rmb706
    @rmb706 3 ปีที่แล้ว

    What courses are prerequisite for the most intuitive understanding of this material? It's nice, it gives some nuance to some discrete probability outcomes- but definitely a bit more rigorous than the undergraduate perspective. I want to see if I can do independent study measure theory before I graduate though. Any suggestions?

  • @tsunningwah3471
    @tsunningwah3471 หลายเดือนก่อน

    角日

  • @thomasc2547
    @thomasc2547 3 ปีที่แล้ว

    Very clear, thank you!

  • @HarpreetSingh-ke2zk
    @HarpreetSingh-ke2zk 2 ปีที่แล้ว

    Help me, please.
    A_1, . . . , A_k are disjoint sets in B[0, ∞) × B (R\{0}), where B is a Borel set and x is the cartesian product.
    How do we interpret B[0, ∞) × B (R\{0})?

  • @علاءعبدالامير-ه8و
    @علاءعبدالامير-ه8و 2 ปีที่แล้ว

    very good

  • @nononnomonohjghdgdshrsrhsjgd
    @nononnomonohjghdgdshrsrhsjgd 3 ปีที่แล้ว

    Hi, can you give an real-life example of Borel sigma?

  • @joshstephenson9711
    @joshstephenson9711 ปีที่แล้ว +1

    That cursor effect is distracting. Reading slides does not make a good lecture. Slides should augment your words, not mirror them.

  • @tsunningwah3471
    @tsunningwah3471 หลายเดือนก่อน

    束中一

  • @tsunningwah3471
    @tsunningwah3471 หลายเดือนก่อน

    k

  • @Subhrajyoti_Ghosh
    @Subhrajyoti_Ghosh 4 ปีที่แล้ว +1

    That means a empty set is always a generated sigma algebra. Am I correct?

    • @thangible
      @thangible 4 ปีที่แล้ว +1

      Is the complement of the empty set also in the set?

    • @minafathy83
      @minafathy83 3 ปีที่แล้ว

      @@thangible this set is closed and open in the topological sense

    • @yaweli2968
      @yaweli2968 3 ปีที่แล้ว

      @@thangible o: of course, the compliment of phi is the set omega which is contained in F but F in turn is contained in the power set of omega.

  • @therasmataz2168
    @therasmataz2168 ปีที่แล้ว

    There is no way is F3 is a sigma- algebra. That is misleading for the people watching! When omega has more than two elements then F3 is not closed under countable unions