превосходный закадровый голос в кубе с прекрасной визуализацией математики создает потрясающий контент, выражаю огромную благодарность тем, кто участвует в данном проекте
Отличные видео. просто респект всем и каждому участвовшему в создании этих шедевров. Если весь ютуб вверх дном перевернуть, лучше этого хер где найдешь. везде эти долбанные вычисления показывают которые, как по мне вообще нахер не кому не нужны
Афигеть, я щас на 3 курсе и я возобновляю знания по лин. алгебре. У нас она была в 1 семестре и всё. Я учил все билеты для экзамена, но за день до него выяснилось, что у меня автомат. Но это неважно. Важно то, что я тогда всё вызубривал просто-напросто. А щас понимать начал всё и я просто афигеваю. Открыл свою тетрадку с 1 курса, в которой писал решения билетов. Я понимаю, что тогда ничего не понимал. А сейчас понимаю, что всё понимаю. Нет, я не родственник Кличко, хоть у меня столько же букв в фамилии и заканчивается она также
Не пойму, почему матрицы нигде, кроме как здесь не объясняются. Везде одни умные термины и алгоритмы вычислений, меня это в стресс вводит. Спасибо за труд!
Здесь лишь визуализация и объяснение для геометрических векторов. Это очень частный случай. И, на самом деле, это нужно лишь после прохождения общего абстрактного материала. Иначе вы будете путаться. "почему матрицы нигде, кроме как здесь не объясняются" - объясняются. Просто вы, видимо, не читаете нормальную литературу. "Везде одни умные термины и алгоритмы вычислений", - термины вы должны были выучить по ходу изучения программы. Алгоритмы вычислений также следуют из определений и свойств. Вы просто неграмотно подошли к процессу обучения.
Вау! Здесь я узнал новый способ как посчитать детерминант НЕ по правилу треугольника. И вообще этого способа нету нигде! Он показывается в видео на 7:25, но он НЕ НАЗЫВАЕТСЯ методом вычисления определителя. Это вообще из темы векторного произведения. Но если мы заменим i, j, k на числа, то можно использовать этот метод. Он такой афигенный и удобный для запоминания! Я нигде такого не видел. Жалко, что в 1 семестре про него не знал(
В формуле, которая обычно есть в учебниках, коэффициент при ĵ равен (v1w3-v3w1), а не (v3w1-v1w3), как в видео. Т.е., можно просто вынести минус и получить привычную формулу.
нифига не понял про правую руку. судя по примеру там, если правой рукой я могу все направления повторить, то значение произведения будет отрицательным.... Потом я понимаю, что вообще график крутится и тогда теряется вообще всякий смысл право-лево... че за бред)))
Сделай тройку пальцами правой руки и пальцами левой руки. Попробуй направить соответственные пальцы в одних и тех же направлениях. Получится совместить только два пальца, третий будет смотреть в противоположные стороны. В 2д пространстве двоек две. В 3д пространстве троек две. Интересно, не станет ли так, что в 4д пространстве четвёрок будет, скажем, три?
Такие красивые видеоролики и голос человека, который переводит, такой приятный и спокойный. Спасибо за создание этого чуда.
превосходный закадровый голос в кубе с прекрасной визуализацией математики создает потрясающий контент, выражаю огромную благодарность тем, кто участвует в данном проекте
Отличные видео. просто респект всем и каждому участвовшему в создании этих шедевров. Если весь ютуб вверх дном перевернуть, лучше этого хер где найдешь. везде эти долбанные вычисления показывают которые, как по мне вообще нахер не кому не нужны
Афигеть, я щас на 3 курсе и я возобновляю знания по лин. алгебре. У нас она была в 1 семестре и всё. Я учил все билеты для экзамена, но за день до него выяснилось, что у меня автомат. Но это неважно. Важно то, что я тогда всё вызубривал просто-напросто. А щас понимать начал всё и я просто афигеваю. Открыл свою тетрадку с 1 курса, в которой писал решения билетов. Я понимаю, что тогда ничего не понимал. А сейчас понимаю, что всё понимаю.
Нет, я не родственник Кличко, хоть у меня столько же букв в фамилии и заканчивается она также
Не пойму, почему матрицы нигде, кроме как здесь не объясняются. Везде одни умные термины и алгоритмы вычислений, меня это в стресс вводит. Спасибо за труд!
Здесь лишь визуализация и объяснение для геометрических векторов. Это очень частный случай. И, на самом деле, это нужно лишь после прохождения общего абстрактного материала. Иначе вы будете путаться. "почему матрицы нигде, кроме как здесь не объясняются" - объясняются. Просто вы, видимо, не читаете нормальную литературу. "Везде одни умные термины и алгоритмы вычислений", - термины вы должны были выучить по ходу изучения программы. Алгоритмы вычислений также следуют из определений и свойств. Вы просто неграмотно подошли к процессу обучения.
Спасибо за перевод!
Спасибо за перевод 🤍
Спасибо за перевод)
Красиво.
Вау! Здесь я узнал новый способ как посчитать детерминант НЕ по правилу треугольника. И вообще этого способа нету нигде!
Он показывается в видео на 7:25, но он НЕ НАЗЫВАЕТСЯ методом вычисления определителя. Это вообще из темы векторного произведения. Но если мы заменим i, j, k на числа, то можно использовать этот метод. Он такой афигенный и удобный для запоминания! Я нигде такого не видел. Жалко, что в 1 семестре про него не знал(
Это ж обычное разложение детерминанта по столбцам. В универе в начале семестра о нем рассказали. Везде о нем написано.
Попробуйка посчитать матрицу с нулевым элементом внутри)
имба
Разве перед j не должен стоять минус при произведении векторов?
В формуле, которая обычно есть в учебниках, коэффициент при ĵ равен (v1w3-v3w1), а не (v3w1-v1w3), как в видео. Т.е., можно просто вынести минус и получить привычную формулу.
а что такое дуальность? что за шапки у ортов?
посмотри предыдущие видео курса
плейлист "Сущность Линейной Алгебры"
А я то надеялся хоть здесь мне не скажут «а чтобы получить перпендык просто примерите вот эту фигню …»
6:46 очень легко запоминается формула. я хз, почему автору легче другой метод
No
нифига не понял про правую руку. судя по примеру там, если правой рукой я могу все направления повторить, то значение произведения будет отрицательным.... Потом я понимаю, что вообще график крутится и тогда теряется вообще всякий смысл право-лево... че за бред)))
Сделай тройку пальцами правой руки и пальцами левой руки. Попробуй направить соответственные пальцы в одних и тех же направлениях. Получится совместить только два пальца, третий будет смотреть в противоположные стороны.
В 2д пространстве двоек две. В 3д пространстве троек две. Интересно, не станет ли так, что в 4д пространстве четвёрок будет, скажем, три?
И С ШАПКОЙ ДЖЕЙ С ШАПКОЙ КЕЙ С ШАПКОЙ