It's possible to solve this problem by first pulling out the √36 and just making that 6 outside the radical. Then what's inside the radical can be simplified by using the same general technique as shown here, although it's a little trickier because fractions are involved. The final answer is 6(√3.5 + √2.5). This equals 20.7118, which is the same as your answer.
sqrt[ 36/(6-sqrt(35))] = sqrt[72/(12-2*sqrt(35))]. The result follows with 12 = 5 + 7.
Я в восхищении, спасибо за труд❤
P=given formula
P^2=36/A=72/2A
2A=12-2rt35
=(rt7-rt5)^2
P=6rt2/(rt7-rt5)
=3rt2(rt7+rt5)
=3(rt14+rt10)
It's possible to solve this problem by first pulling out the √36 and just making that 6 outside the radical. Then what's inside the radical can be simplified by using the same general technique as shown here, although it's a little trickier because fractions are involved. The final answer is 6(√3.5 + √2.5). This equals 20.7118, which is the same as your answer.
Boa questão! Sumi do canal há algum tempo, mas estou de volta, e vejo que seus vídeos estão ainda melhores!
√(36 / (6 - √35)).
multiply up & down by (6 + √35).
√(36 / (6 - √35)) =√((36(6 + √35)) / ((6 - √35)(6 + √35))).
Denominator is
(6 - √35)(6 + √35) = 6^2 - (√35)^2
= 36 - 35 = 1.
So √((36(6 + √35)) / 1)
= √(36(6 + √35))
= √(6^2(6 + √35))
= 6√(6 + √35)
Очень сложно. Проще сделать так:6 - sqrt(35) = (12-2*sqrt(7*5))/2 = (5 - 2*sqrt(7*5) + 7)/2 = )(sqrt(7- sqrt(5))^2)/2 - Ну, а дальше все очевидно.
Very good vídeo. Congrats
Genial! Tout simplement génial !
Sqrt(36/(6-Sqrt(35))=6Sqrt(6+Sqrt(35)=6Sqrt((12+2Sqrt(35))/2)=6(Sqrt(7)+Sqrt(5))/Sqrt(2)=3Sqrt(14)+3Sqrt(10)
Germany, A Nice Radical Math Simplification: √[36/(6 - √35)] =?
1/(6 - √35) = (6 + √35)/[(6 - √35)(6 + √35)] = (6 + √35)/(36 - 35) = 6 + √35
2(6 + √35) = 12 + 2√35 = (√7)² + 2(√7)(√5) + (√5)² = (√7 + √5)²
√[36/(6 - √35)] = √{18[2(6 - √35)]} = √[18(√7 + √5)²] = (√18)(√7 + √5)
= 3(√2)(√7 + √5) = 3√14 + 3√10
A simpler solving. 6-sqrt(35)= (12 - 2*sqrt(5*7))/2 = (sqrt(5) - sqrt(7)).^2/2 = 2/(sqrt(5) + sqrt(7)).^2. So original expression is 3(sqrt(2)*(sqrt(5) + sqrt(7))) = 3(sqrt(10)+sqrt(14))
" 6-sqrt(35)= (12 - 2*sqrt(5*7))/2 = (sqrt(5) - sqrt(7)).^2/2 = 2/(sqrt(5) + sqrt(7)).^2." is incorrect.
" 6-sqrt(35)= {12 - 2*sqrt(5*7)}/2= {sqrt(7) - sqrt(5)}^2/2 , so sqrt{6-sqrt(35)}={sqrt(7) - sqrt(5)}/sqrt(2) " is correct.
3:15 How did you know that the expression could be turned into that form?
Bravo...simplify for U very difficult for me😅😅
А чем ответ вообще отличается от исходной задачи? Если нужно извлекать корни с помощью калькулятора, так я это и сразу могу сделать.
√( 36 / ( 6 - √35 ) )
= 6√2 / √( 12 - 2√35 ) )
= 6√2 / ( √7 - √5 )
= 3√2 ( √5 + √7 )
= 3√10 + 3√14
Why is it so difficult? √(36(6 - √35))=6√(12- 2 √35)/√2=6√(√7-√5)^2/√2 =3√2 (√7-√5)
What a nightmare!!! I have solved in 2 minutes without such a calculation and without of paper and stick...
Примерно 20,7
Зачем до такой степени подробно?
I think is wrong....😢😢😢
Oh, I thought the answer was 30!
We’re in the world would generate this math problem? Give us a word problem.
√(36/(6-√35))=6(√(6+√35) )/√((6-√35)(6+√35) )=6(√(6+√35) )=6(1/√2 √(12+2√35) )=
=6(1/√2 √(12+2√5 √7) )=6/√2 √((√5)^2+(√7)^2+2√5 √7) =3 √2 √((√5+√7)^2 )=
=3 √2 (√5+√7)=3(√10+√14)
И зачем такой мудреж
Nói bạn đừng tự ái chứ bạn làm toán chán lắm, kéo dài lê thê