how Richard Feynman would integrate 1/(1+x^2)^2

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ก.ย. 2022
  • Learn more problem-solving techniques on Brilliant: 👉 brilliant.org/blackpenredpen/ (20% off with this link!)
    We can use trig substitution (letting x=tanθ ) to do a typical calculus 2 integral, the integral of 1/(1+x^2)^2. However, we will use Feynman's technique of integration (aka Leibniz's integral rule, aka differentiation under the integral sign) to come up with a very nice integral formula.
    Here's the integral of 1/(1+x^2) by using complex numbers 👉 • integral of 1/(x^2+1) ...
    🛍 Shop math t-shirts & hoodies: bit.ly/bprpmerch
    10% off with the code "WELCOME10"
    ----------------------------------------
    **Thanks to ALL my lovely patrons for supporting my channel and believing in what I do**
    AP-IP Ben Delo Marcelo Silva Ehud Ezra 3blue1brown Joseph DeStefano
    Mark Mann Philippe Zivan Sussholz AlkanKondo89 Adam Quentin Colley
    Gary Tugan Stephen Stofka Alex Dodge Gary Huntress Alison Hansel
    Delton Ding Klemens Christopher Ursich buda Vincent Poirier Toma Kolev
    Tibees Bob Maxell A.B.C Cristian Navarro Jan Bormans Galios Theorist
    Robert Sundling Stuart Wurtman Nick S William O'Corrigan Ron Jensen
    Patapom Daniel Kahn Lea Denise James Steven Ridgway Jason Bucata
    Mirko Schultz xeioex Jean-Manuel Izaret Jason Clement robert huff
    Julian Moik Hiu Fung Lam Ronald Bryant Jan Řehák Robert Toltowicz
    Angel Marchev, Jr. Antonio Luiz Brandao SquadriWilliam Laderer Natasha Caron Yevonnael Andrew Angel Marchev Sam Padilla ScienceBro Ryan Bingham
    Papa Fassi Hoang Nguyen Arun Iyengar Michael Miller Sandun Panthangi
    Skorj Olafsen Riley Faison Rolf Waefler Andrew Jack Ingham P Dwag Jason Kevin Davis Franco Tejero Klasseh Khornate Richard Payne Witek Mozga Brandon Smith Jan Lukas Kiermeyer Ralph Sato Kischel Nair Carsten Milkau Keith Kevelson Christoph Hipp Witness Forest Roberts Abd-alijaleel Laraki Anthony Bruent-Bessette Samuel Gronwold Tyler Bennett christopher careta Troy R Katy Lap C Niltiac, Stealer of Souls Jon Daivd R meh Tom Noa Overloop Jude Khine R3factor. Jasmine Soni L wan na Marcelo Silva
    ----------------------------------------
    💪 If you would also like to support this channel and have your name in the video description, then you could become my patron here / blackpenredpen

ความคิดเห็น • 465

  • @AndrewDotsonvideos
    @AndrewDotsonvideos ปีที่แล้ว +529

    He has another famous technique (at least for people who calculate Feynman diagrams) called using Feynman parameters. It’s a way of re-casting an integral you’re solving into a form with temporarily more integrals that make the original integral easier to evaluate. Of course this is only helpful if the remaining Feynman parameter integrals can be solved analytically or are at least less expensive to solve numerically (it’s usually the latter). Not sure if you’ve ever made a video on it, but in the same spirit of Feynman integration tricks!

    • @maalikserebryakov
      @maalikserebryakov ปีที่แล้ว +11

      Dude you’re still interested in symbolic calculus?

    • @AndrewDotsonvideos
      @AndrewDotsonvideos ปีที่แล้ว +39

      @@maalikserebryakov never know when it’ll help with an integral I’m trying to solve for research 🤷🏻‍♂️

    • @alozin5339
      @alozin5339 ปีที่แล้ว +5

      yo whens the next upload

    • @nicolasmendoza6183
      @nicolasmendoza6183 ปีที่แล้ว +8

      @@maalikserebryakov buddy, you're watching the wrong channel if you're not interested!

    • @abrarazad1571
      @abrarazad1571 5 หลายเดือนก่อน +2

      You also watch him????

  • @plainbreadmike
    @plainbreadmike ปีที่แล้ว +362

    Can't get enough of these integrals with Feynman's technique videos, they're just so satisfying!

    • @SydneyWeidman
      @SydneyWeidman ปีที่แล้ว

      P

    • @aurelio3532
      @aurelio3532 ปีที่แล้ว

      yes!!! keep making more please!!!!

    • @hfgfgnnfgng5562
      @hfgfgnnfgng5562 ปีที่แล้ว

      Fr ...

    • @gagadaddy8713
      @gagadaddy8713 ปีที่แล้ว +4

      This kind of Integration trick is really OUT OF THE BOX, only from the brain of those genius ..... not the ordinary maths student 😆

    • @epikherolol8189
      @epikherolol8189 6 หลายเดือนก่อน

      Usually that's the case but we use these techniques after their inventions to carry on their legacy.
      That's how new discoveries are made​@@gagadaddy8713

  • @flowingafterglow629
    @flowingafterglow629 ปีที่แล้ว +65

    That answer is really slick, because if you look at it, the first term just looks like the integral of 1/u^2, where u = 1+x^2 and then the second term is just some version of the integral of 1/(1+x^2)
    Random factors of 2, I agree, but the form is pretty cool

  • @blackpenredpen
    @blackpenredpen  ปีที่แล้ว +8

    Learn more problem-solving techniques on Brilliant: 👉 brilliant.org/blackpenredpen/ (20% off with this link!)

  • @davidalexander4505
    @davidalexander4505 ปีที่แล้ว +14

    For definite integrals, I now see that there is actually no differentiating under an integral sign (requiring something like dominated convergence theorem) it's actually much prettier, we can write it as follows:
    d/dx (1/a arctan(x/a))
    = 1/(a^2+x^2)
    Hence,
    d/da d/dx (1/a arctan(x/a))
    = d/da 1/(a^2+x^2).
    By commutativity of partial derivatives,
    d/dx d/da (1/a arctan(x/a))
    = d/da 1/(a^2+x^2).
    Thus, an anti derivative for
    d/da (1/a arctan(x/a))
    is
    d/da 1/(a^2+x^2). (then work out these partial derivatives)

  • @MathNerd1729
    @MathNerd1729 ปีที่แล้ว +8

    I recall seeing you do this in October 2018. Still a very neat video! :)

  • @adamlopez2339
    @adamlopez2339 ปีที่แล้ว +4

    wow, what a nice way to solve this integral. Thank you for the video

  • @jellowz3556
    @jellowz3556 ปีที่แล้ว +38

    Thank po sir!
    I hope you will also teach this topic "definition of exp z for imaginary z" under the linear equations with constant coefficient

  • @neutron417
    @neutron417 ปีที่แล้ว +5

    Didn't thought bout that amazing technique!

  • @haaansolo8568
    @haaansolo8568 ปีที่แล้ว +6

    I learned about Feynman's trick when it came up in Howard and Sheldon's fight on tbbt, and have been stunned by it ever since.

    • @SahajOp
      @SahajOp ปีที่แล้ว

      What is that

    • @a_beats5529
      @a_beats5529 ปีที่แล้ว

      @@SahajOp tbbt is the big bang theory, a famous american sitcom

    • @6612770
      @6612770 ปีที่แล้ว

      What is the episode name?

  • @Francesco-bf8cb
    @Francesco-bf8cb ปีที่แล้ว +7

    I've tried a differents (but much longer) method
    You know when you differentiate f/g you get (f'g-g'f)/g², so know it becomes a differential equation

  • @jirisykora9926
    @jirisykora9926 ปีที่แล้ว +2

    I don't know if anyone wrote it before but if you plug in -1 for a it's going to be the same as for a=1 because of the nature of the formula, where a^3 and tan^-1 cancel the negative sign of each other.

  • @chanduudarapu7906
    @chanduudarapu7906 10 หลายเดือนก่อน +4

    Thank you so much, lots of love from India 🇮🇳

  • @NarutoSSj6
    @NarutoSSj6 ปีที่แล้ว +2

    Rip Chen Leu. Although maybe never uttered by name again, you have a special place in all our hearts.

  • @rjc3343
    @rjc3343 ปีที่แล้ว +31

    Bro, you're so talented, I have my undergrad as a mech E and still come to your page for fun! Please don't stop the videos lol

    • @maalikserebryakov
      @maalikserebryakov ปีที่แล้ว

      How’s mechanical engineering treating you 8 months later?
      Symbolic calculus isn’t going to help you as an engineer you know. I bet you’re thinking of dropping out.

    • @jmz_50
      @jmz_50 9 หลายเดือนก่อน

      How are you currently doing? Just curious, good luck btw

    • @rjc3343
      @rjc3343 9 หลายเดือนก่อน +2

      Man that's a very toxic outlook on math and its integration (no pun intended) into engineering. I use the skills taught in diffEQ almost daily. And yeah, it was the best decision of my life to leave active duty in the military and pursue that degree. I have a solid job that keeps me entertained daily. And yeah, I'm not a quitter, hence already having the undergrad when I wrote this originally, but thanks for your concern.
      @@maalikserebryakov

    • @rjc3343
      @rjc3343 9 หลายเดือนก่อน

      I'm good, love the degree. Work with a lot of EE and Physicists that treat me and my ideas with a lot of respect. @@jmz_50

    • @lumina_
      @lumina_ 7 หลายเดือนก่อน

      ​@@maalikserebryakov why are you being so negative? You seem like a miserable person to be around

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 ปีที่แล้ว

    Excellent presentation 👌

  • @joykukreja4270
    @joykukreja4270 ปีที่แล้ว +3

    Cool method. I did it by putting x = tan theta in 5 steps.

  • @SuperYoonHo
    @SuperYoonHo ปีที่แล้ว +1

    Thank you!

  • @frencyii5370
    @frencyii5370 หลายเดือนก่อน +1

    You can also solve it by substituting x=tan(u), it allows u to simplify until coming to intregral(cos^2(x)), which is easily solvable with some goniometric formulas.

  • @juhakivekas2175
    @juhakivekas2175 ปีที่แล้ว

    Man, that was beautiful!

  • @123christiansong
    @123christiansong ปีที่แล้ว

    Great 👌 video , much helpful!

  • @XKhanBTC
    @XKhanBTC ปีที่แล้ว +1

    This video made my day🔥

  • @aurelio3532
    @aurelio3532 ปีที่แล้ว

    absolutely fantastic

  • @PapiCiencias
    @PapiCiencias 4 หลายเดือนก่อน

    i love you man, you are very carismatic even not trying it

  • @maciejkubera1536
    @maciejkubera1536 ปีที่แล้ว +2

    Great video as usual! On 0:49 You forgot to square the constant c ;) ;) ;) ;)

  • @nowhereman000
    @nowhereman000 4 หลายเดือนก่อน

    If Bro can make an entire playlist on feynman's technique : I one over zero percent sure I will watch it completly.

  • @zhelyo_physics
    @zhelyo_physics ปีที่แล้ว

    Love this!

  • @markproulx1472
    @markproulx1472 ปีที่แล้ว

    That’s wild!

  • @vishalmishra3046
    @vishalmishra3046 ปีที่แล้ว +35

    This video has an innovative new method of solving such integrals. Here is the old boring way for the same -
    set x = tanT which changes the problem to INT { cos^2 T = (1+cos2T)/2 } dT = T/2 + sin2T/4 = T/2 + 2tanT / 4sec^2 T = [ arctan x + x / (1+x^2) ] / 2

    • @AyushGupta-cj3sy
      @AyushGupta-cj3sy ปีที่แล้ว +2

      We indians flooded everywhere 🤣🤣

    • @subramanyakarthik5843
      @subramanyakarthik5843 11 หลายเดือนก่อน +2

      @@AyushGupta-cj3sy This Equation says about feyman technique

    • @AyushGupta-cj3sy
      @AyushGupta-cj3sy 11 หลายเดือนก่อน +2

      @@subramanyakarthik5843 buddy i mean to says indian 🇮🇳could easily solve these

    • @AyushGupta-cj3sy
      @AyushGupta-cj3sy 11 หลายเดือนก่อน +1

      @@subramanyakarthik5843 I understand
      Bhai
      But it's mostly in their higher studies
      But we have in 12

    • @subramanyakarthik5843
      @subramanyakarthik5843 11 หลายเดือนก่อน +1

      @@AyushGupta-cj3sy Hey im an IT professional i can solve these problems easily just exploring at these logics here

  • @MochaE44449
    @MochaE44449 4 หลายเดือนก่อน

    I have no idea what any of this is, but it’s fun to watch

  • @fyrerayne8882
    @fyrerayne8882 ปีที่แล้ว +1

    Thanks

  • @vietdungle1237
    @vietdungle1237 ปีที่แล้ว +2

    What a nice idea to integreat the seemingly impossible func

  • @8bitenginedayo
    @8bitenginedayo ปีที่แล้ว +2

    Bruh this was literally a question in my homework today

  • @s.m.m99203
    @s.m.m99203 ปีที่แล้ว

    Thank you sir

  • @SlipperyTeeth
    @SlipperyTeeth ปีที่แล้ว +8

    "Why do we add the +C at the end?" It depends on what you consider integration to be. Normally we just think of integration as the opposite of differentiation. But then, what is differentiation?
    If you think of differentiation as a function from functions to functions, then integration should be its inverse function. But there isn't in general a left inverse for differentiation, because it's not one-to-one - and there are multiple right inverses. So you might consider "integration" to be the entire set/class of right inverses of differentiation - such that whenever you compose "integration"/differentiation, you pull back this abstract layer of set/class and compose them with every instance of an integration function. So differentiation after "integration" is just the set/class of differentiation after right inverses of differentiation - which all collapse to the identity. And there's the added bonus that with just a little more information (such as a single point on the curve) you'll be able to choose one of those integration functions to "act" as a left inverse for a specific input - so the whole set/class of integration functions can act as a left/right inverse for differentiation.
    For single variable calculus, that's about all you need to consider, and this is a perfectly fine way to define the integration notation. For multivariable calculus, there's a new wrinkle. You can have a function that's constant in one variable, but not another (Let f(x,y) = y, then d/dx (f(x,y)) = 0). So if you integrate a function in the variable x, then you pick up a constant in the variable x. And then if you differentiate that by the variable a, it doesn't always become 0, because "constant in the variable x" doesn't imply "constant in the variable a". Sure, some functions are constant in both x and a, but not all. So if we compose differentiation with "integration", some of those compositions will collapse the constant, but not all. We didn't add +C at the end, it never should have been removed.

  • @ceromat2022
    @ceromat2022 ปีที่แล้ว +1

    This is another approach: th-cam.com/video/dbNhrrWUkkc/w-d-xo.html

  • @illumexhisoka6181
    @illumexhisoka6181 ปีที่แล้ว

    Brilliant
    First time seeing this trick

  • @dodokgp
    @dodokgp ปีที่แล้ว +1

    Nice! The caption of the video could have been "Integrating a function without integration"

  • @SakariPirnes
    @SakariPirnes ปีที่แล้ว +82

    One mistake: C is a constant in terms of x not in a. Hence, the partial derivative d/da C is not zero in general, it is just another constant in terms of x (which you added back in the end). Nice video! (PLEASE SEE EDITS BELLOW BEFORE YOU COMMENT)
    Edit: C may depend on parameter a however it wants. Thereby, C can be any function of parameter/variable a, and so, it might not be differentiable with respect to a. So in the end, the best way is just to find one antiderivative of ∫1/(a^2+x^2)^2dx. Then when we set a=1, we now know one antiderivative of ∫1/(1+x^2)^2dx. But we know that all the other antiderivatives of ∫1/(1+x^2)^2dx are obtained by adding a real constant to the antiderivative we already know, since g'(x)=0 for all real x if and only if g is a constant function. This is basically what @blackpenredpen did, but the reasoning that C is a constant with respect to a is not right although it is irrelevant mistake for the main point of the video.
    Edit 2: First of all my claim is that ∫1/(a^2+x^2)dx=(1/a)arctan(x/a)+C(a) where C:R->R is any function and R is the set of real numbers. If you think that I'm wrong and that ∫1/(a^2+x^2)dx=(1/a)arctan(x/a)+c, only when c is just any real number, i.e. constant with respect to both a and x. Then your claim against my claim is that if C:R->R is not a constant function, then
    (1/a)arctan(x/a)+C(a) is not an antiderivative of 1/(a^2+x^2) with respect to x. To help you, I will go through what you are trying to prove and why it is not true.
    So you need to take a function C:R->R which is not constant, for example you can think C(a)=a. Then you need to prove that (1/a)arctan(x/a)+C(a) is not an antiderivative of 1/(a^2+x^2) with respect to x. But you know the definition of antiderivative for multi variable functions, so you know that by the definition you need to prove that the partial derivative d/dx ( (1/a)arctan(x/a)+C(a) ) is not equal to 1/(a^2+x^2). But we know the following partial derivatives: d/dx (1/a)arctan(x/a)=1/(a^2+x^2) and d/dx C(a) = 0. So by the linearity of partial derivative you have d/dx ( (1/a)arctan(x/a)+C(a) )=1/(a^2+x^2). Thus, your claim is wrong and we have ended up proving that (1/a)arctan(x/a)+C(a) is an antiderivative of 1/(a^2+x^2) with respect to x if C:R->R is any function. In the comments you can find also different reasonings and how other people realized this.
    If you still disagree, please read the 50+ other comments in detail, read my arguments, read others arguments, read why in the end they realized that C can be a function of a. Our comments are not the best source so I also recommend studying or recalling multivariable calculus and before that one variable calculus. Even better is to go to talk people in some university's math department. If after this you still feel that I'm wrong, then G I M M E A V A L I D P R O O F of the direction you are claiming and cite to my previous comments and show where I went wrong so the conversation is easier and faster.

    • @tobechukwublessed4274
      @tobechukwublessed4274 ปีที่แล้ว +7

      A constant is a constant, independent of any variable... That's what I think. So it's pretty much staright, no mistake

    • @SakariPirnes
      @SakariPirnes ปีที่แล้ว +4

      ​@@tobechukwublessed4274 Yes you are correct, but here C is only a constant in terms of x. So first we were just in the "x-world" where C is just a constant. But when we introduce the parameter aka new real variable a we are not anymore in the "x-world", we are in the "xa-world" where C could depend on a while it does not depend on x. It might sound nit picking but this is really important in multivariable calculus.
      One real variable: Here when we talk about integration in one variable we mean antiderivative aka inverse derivative aka indefinite integral, i.e. that if F'(x)=f(x), then ∫ f(x)dx=F(x)+C, where C is just a constant aka a real number. So the antiderivative ∫ f(x)dx gives the set of all functions F whose derivative is f.
      Two real variables: In this video to do the Feynman's trick our function depends on two variables, namely x and a. We want to have the same property as in one variable, that is, ∫f(x,a)dx gives the set of all functions F whose partial derivative with respect to x is f. Thereby, if d/dx F(x,a)=f(x,a), then ∫f(x,a)dx=F(x,a)+C(a), where C is now a real function, which could be a constant. Suppose that we allow C to be only a constant, this is a valid definition but not very useful which I try to clarify by the next example. Let F(x,a)=x+a. Then d/dx F(x,a)=1, and so, ∫d/dx F(x,a)dx = ∫1dx=x+C. If we don't allow C to be a function of a we don't have the nice antiderivative property mentioned above, i.e. F(x,a) do not belong to the set of functions obtained from the antiderivative ∫d/dx F(x,a)dx. More practical example why we want that the antiderivative property is satisfied is that we want to have working tool to solve partial differential equations.
      Also @Phoenix Fire has really nice comment also in this comment section which clarifies this thing.
      Hopefully this clarifies.

    • @tobechukwublessed4274
      @tobechukwublessed4274 ปีที่แล้ว

      @@SakariPirnes it's a cool observation, it really reminds me of solving ODE's by method of Exact equations where some constant may pertain to some variable after integration. But... If you examine carefully what he did, he differntiated both sides partially with respect to a... Now in partial differentiation, the only thing that is permitted to stand is the variable which we are differentiating with respect to, all other variables and/or constants will be assumed as constants for the time being, and what happens when we differntiate constants?... They vanish!

    • @tobechukwublessed4274
      @tobechukwublessed4274 ปีที่แล้ว +1

      But When we integrate partially, a constant function of the other variables apart from the one we integrate with respect to comes in place.... For instance.... integrate an f'(x,y,z) partially with respect to x will yield f(x,y,z) + h(y) + g(z) where h(y) and g(z) is any function of y and z respectively, be it a constant function or any other type.... But when we differntiate partially, all constants what so ever must vanish. That's my point...

    • @tobechukwublessed4274
      @tobechukwublessed4274 ปีที่แล้ว +1

      Finally, he was integrating, yes, but he differentiated while integrating, that's the beauty of that method. It's stainless

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว

    Metodo interessante,bravo!!!

  • @gregotieno5457
    @gregotieno5457 ปีที่แล้ว +2

    wow my math guy🔥👊💪

  • @orenfivel6247
    @orenfivel6247 ปีที่แล้ว +31

    i thought U gonna do IBP w/ DI method😁.
    By the way 4:57 the constant C, it does not depend on x, but might be depend on a (Like in an Exact ODE solving procedure).
    Thus technically, when differentiate WRT a, we should have C'(a) which is another constant that des not depend on x,
    and eventually U will rename the last integral constant as C or c or whatvever u wanna
    😁

    • @BetaKeja
      @BetaKeja ปีที่แล้ว +4

      Yeah, I had to pause at 7:04 when he added the C back. Nope, C should not have been removed. It is constant w.r.t. x not a.

    • @epikherolol8189
      @epikherolol8189 6 หลายเดือนก่อน +3

      ​@@BetaKejaC is technically the arbitrary constant of integration which is just a variable number.
      But it is a number after all and thus differentiation of any number with respect to anything is 0

  • @jhondoe1618
    @jhondoe1618 ปีที่แล้ว +3

    No hay duda de que Feynman era un genio. Gran video, saludos desde Santa Marta, Colombia

  • @ritikraj26_
    @ritikraj26_ ปีที่แล้ว

    Wow. Why did I never think of this?!?

  • @tapankumardas3292
    @tapankumardas3292 ปีที่แล้ว

    man of action.

  • @whilewecan
    @whilewecan 3 หลายเดือนก่อน

    Excellent.

  • @ivanegorov3425
    @ivanegorov3425 ปีที่แล้ว +2

    一个小小的建议,您可以在视频的演算完成后留一两秒左右方便截图,视频很棒,感谢您的付出!

    • @blackpenredpen
      @blackpenredpen  ปีที่แล้ว +1

      好, 謝謝!
      btw, 這部也有中文版的 (自己幫自己打廣告 哈哈) th-cam.com/video/sh5dQ1ZxfTY/w-d-xo.html

    • @pashaw8380
      @pashaw8380 ปีที่แล้ว

      ​@@blackpenredpen You need to take a read at the above comments made by @Sakari Pirnes . Some of those here are professional grad students who have gone through real analysis and functional analysis. In your video you made a mistake by considering C as a normal constant treated the same as that in single variable calculus. But the C here is not an ordinary C; it is a function of 'a' not necessarily zero after being differentiated with respect to the parameter 'a'.

  • @hugo_PaNK
    @hugo_PaNK ปีที่แล้ว

    Qué genio eres, y Feynman también.

  • @ashishjoshi911
    @ashishjoshi911 ปีที่แล้ว

    you can use chutur putur points here
    like take x common from the bracket, it will come out xsquare and inside the bracket call it t and then boom
    only lakshiyans will understan

  • @bksikbal44239
    @bksikbal44239 10 หลายเดือนก่อน

    thanks bro💖🌺

  • @mplaw77
    @mplaw77 ปีที่แล้ว +1

    Very cool

  • @good.citizen
    @good.citizen ปีที่แล้ว

    👍 thank you

  • @MahfuzRaian
    @MahfuzRaian ปีที่แล้ว +2

    What is the rule of differentiating the integrand inside the integral?

  • @infernape716
    @infernape716 ปีที่แล้ว

    That's so cool

  • @shone7064
    @shone7064 ปีที่แล้ว

    It's so reminiscent of eigenvalue equations

  • @abhishekchoudhary4689
    @abhishekchoudhary4689 ปีที่แล้ว +3

    Just substitute x=tan theta you will get theta/2 + sin2theta / 4 where tantheta =x

  • @gio5969
    @gio5969 ปีที่แล้ว +2

    Calculus, the most powerful mathematics in the world and it would blow your mind clean off, you've gotta ask yourself one question: "Can I integrate? Well, can ya, punk?"

  • @bottom-up1981
    @bottom-up1981 ปีที่แล้ว +1

    物理里这种操作真的多,代数求和或者积分结构加偏导,真的是很漂亮的做法

    • @pashaw8380
      @pashaw8380 ปีที่แล้ว

      然而他在影片裏展示了錯誤的訊息,他將C看成了一個普通的常數,但C并不是一個普通的常數而是一個C(a)的實變函數,他在影片裏把它看作了C(x)因此直接偏導得零,這是一個數學裏很大的錯誤(即使他很幸運地得到了正確的結果),他思考的不夠嚴謹,沒有往多變數微積分的方向去思考。如果他瞭解汎函分析和實變函數論,他就不會犯這個錯誤。倘若你用已知 ∫ 1/√(a² + x²) dx = ln ∣x+√(a² + x²)∣ + C 的訊息去用他上述的方式解 ∫ 1/∛(a² + x²) dx 你就會知道我的意思了,不會得到正確的答案。費曼的方法其實就是萊布尼兹的積分法則,但萊布尼兹法是建立在有界的積分上,并且要遵守收斂定理,不可隨意亂用因爲那是有局限性的。這裏的作者拿它來解不定積分就是一個錯誤的做法了。這個如果不去做深入的講解會誤人子弟的。數學是一個非常嚴謹的學科,不能有漏洞的。

    • @bottom-up1981
      @bottom-up1981 ปีที่แล้ว +1

      @@pashaw8380 多谢老哥指点,我并非数学和物理出身,做的也是一些无关紧要的脏活,很多东西确实不太了解。

    • @bottom-up1981
      @bottom-up1981 ปีที่แล้ว +1

      @@pashaw8380 对于泛函,我就在分析力学,qm以及工程数学中有浅薄的了解,推导和证明是很快乐的事情,但更多拿来算。

  • @oraz.
    @oraz. ปีที่แล้ว +2

    This seems easier then trig substitution

  • @djh9502
    @djh9502 ปีที่แล้ว

    Sir more good problems 👍👍

  • @veerdabas5578
    @veerdabas5578 ปีที่แล้ว

    You could just solve it by substitution taking x= tanθ and dx = sec^2θ now in the denominator (1+tan^2θ) = sec^4θ now in the end we get cos^2θ and using cos 2θ formula we get θ/2 +cos2θ/4 now by subst. in the end we get tan-1x/2 + 0.5((x^2)/(1+x^2))
    simplest method i could have thought about .Takes about 2 minutes to solve .

  • @gheffz
    @gheffz ปีที่แล้ว

    I think it pretty good... and as you end with, cool!

  • @arpanmukherjee4625
    @arpanmukherjee4625 4 หลายเดือนก่อน

    I came here after Howard mentioned about it in TBBT to an answer to Sheldon's question.

  • @markobavdek9450
    @markobavdek9450 ปีที่แล้ว

    Magician of parameters

  • @user-jw7hz3jk8d
    @user-jw7hz3jk8d หลายเดือนก่อน

    Amazing

  • @madhavharish2575
    @madhavharish2575 ปีที่แล้ว

    Bro!! you could have done this by just substituting "x" as "tan theta", which will give you integration of Cosine square theta w.r.t theta and that's very easy to solve without using Feynman's Technique!! Btw the Feynman's technique is excellent!!😁

  • @think_logically_
    @think_logically_ ปีที่แล้ว +2

    Is it legitimate to use Feyman's trick with indefinite integrals? An indefinite integral ∫ 1/(a²+x²) dx is in fact 1/a arctan(x/a) + C(a), where C(a) is not just a constant, but any function depending on 'a', but not on 'x'. Then the derivative d/da has an additional term C'(a) which is impossible to find ! In this case it's a mere coincidence that result is correct (if it really is).
    Take another example F(a)= ∫(x^a) dx =x^(a+1)/(a+1)+C(a). If you ignore C'(a), differentiate F'(a)=∫(x^a) ln(x) dx = x^a - x^(a+1)/(a+1)², then let a=0, you get ∫lnx dx = 1-x, while the correct answer is ∫ lnx dx = xlnx - x + C.
    BTW, I don't believe Feyman himself ever used his trick with indefinite integrals, so the title of the video looks misleading to me. 😊

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t ปีที่แล้ว +1

    Feynman is here! ... Cool
    I love Feynman (he's my favorite scientist ever).

  • @marcogelsomini7655
    @marcogelsomini7655 ปีที่แล้ว

    Feynman was a crazyyyy dude

  • @cwater9795
    @cwater9795 ปีที่แล้ว

    Can you use same technique to integrate 1/(x^2+x+1)^2 ?

  • @morteza3268
    @morteza3268 ปีที่แล้ว +1

    Great 👍

  • @General12th
    @General12th ปีที่แล้ว +1

    Hi BPRP!

  • @rodgertheraccoontreyguy7793
    @rodgertheraccoontreyguy7793 หลายเดือนก่อน +1

    I used regular trig sub and got the same answer...

  • @aserioussalamander9475
    @aserioussalamander9475 ปีที่แล้ว

    Me: (10 years since doing calc during first 10 seconds of the video): *slaps head* "of course!"

  • @RakeshKumar-rc4sj
    @RakeshKumar-rc4sj ปีที่แล้ว

    Please solve one integral .... integral from 0 to π dx/ (square of a square cosine square x+ bsquare sine square x)

  • @nada-wv9ys
    @nada-wv9ys ปีที่แล้ว

    Yo can you make a video on how to get better at math? Ive been struggling for so long

  • @barneyronnie
    @barneyronnie 7 หลายเดือนก่อน

    Feynman was the man!

  • @harshbansal7524
    @harshbansal7524 ปีที่แล้ว +1

    sir please of this:
    integral of sqrt(x^3+1) w.r.t dx

  • @shariahshariah1453
    @shariahshariah1453 ปีที่แล้ว +1

    Just cool

  • @DavyCDiamondback
    @DavyCDiamondback ปีที่แล้ว

    So does it wind up not mattering that the value of c, for any constant boundary conditions, is variable with respect to changing the value of a???

  • @prakashgupta8342
    @prakashgupta8342 ปีที่แล้ว

    Integration of 1/(1+x⁴) please

  • @subramanyakarthik5843
    @subramanyakarthik5843 11 หลายเดือนก่อน

    I got the answer as 1/4 * Sin(2*Tan-1(x)) + 1/2 * (Tan-1(x)) by logical way

  • @highgroundproductions8590
    @highgroundproductions8590 ปีที่แล้ว +2

    You can just do this with partial fractions.

  • @fj2147
    @fj2147 ปีที่แล้ว

    can you make a video of limit integration?

  • @arkadipray1210
    @arkadipray1210 5 หลายเดือนก่อน

    What if we substitute x = tan a ,
    Then , dx = sec² a da
    Substituting in above
    1/(1+x²)² dx
    → sec²a/(1+tan²a)² da
    → sec²a/(sec²a)² da
    → 1/sec²a da
    → cos²a da
    → 1/2 × 2cos²a da
    → 1/2 × (1+cos 2a) da
    Integrating we get ,
    1/2 (a + (1/2) sin 2a) + c
    Now, since x = tan a
    And we know sin 2a = 2tan a/(1+tan²a)
    Therefore, sin 2a = 2x/(1+x²)
    → 1/2 ( tan^-1 x + (x/1+x²)) + c
    That's the answer....

  • @codewithbhagat1244
    @codewithbhagat1244 ปีที่แล้ว

    I love it

  • @owlsmath
    @owlsmath ปีที่แล้ว +1

    wow great video! and fun way to solve it

  • @i3moryy797
    @i3moryy797 ปีที่แล้ว

    yo please if i want to ask a question can i ask you and how to ask
    thanks

  • @NurHadi-qf9kl
    @NurHadi-qf9kl ปีที่แล้ว

    Itu jenis intgral pecah rasionak. Maka dimisalkan
    1/(1+x^2)= {(Ax+B)/(1+x^2)}+{(Cx+D)/(1+x^2)^2}
    Dari asumsi tsb, konstanta2 ABCA dapat ditemukan
    1=(Ax+B)(1+x^2)+(Cx+D)
    1=Ax+B+Ax^3+Bx^2+Cx+D
    1=(B+D)+(A+C)x+Bx^2+Ax^3
    Yg berarti A=B=0; D=1; C=0
    Int menjadi

  • @sanyamalhotra6834
    @sanyamalhotra6834 ปีที่แล้ว

    damn why dont they teach these bangers at school, this is so coool

  • @muradmuradov4522
    @muradmuradov4522 ปีที่แล้ว

    Məşədi qardaslarim hazir olun artiq döyüşə

  • @armanavagyan1876
    @armanavagyan1876 ปีที่แล้ว

    Please more often new videos)

  • @Shivam-ee2pd
    @Shivam-ee2pd ปีที่แล้ว

    How do you integrate 1/(x^a+a^x)?

  • @adityasharma5692
    @adityasharma5692 4 หลายเดือนก่อน

    Can we do this by x=tantheta and then diffrentiatte that functin w.r.t to x then putting the value of dx through this and then final it become (cos)²theta dtheta ??? Can we do this

  • @user-fc8xw4fi5v
    @user-fc8xw4fi5v ปีที่แล้ว

    i'm a simple man. i see feynman i click

  • @almazchati4178
    @almazchati4178 ปีที่แล้ว

    Probably this technique was known long before Feynman. I used to use it not knowing that
    it was his technique.

  • @arjun_.16
    @arjun_.16 ปีที่แล้ว +2

    just solved this question in my JEE online course.....

    • @Hxkhxh
      @Hxkhxh ปีที่แล้ว

      i also

  • @averagegamer9513
    @averagegamer9513 ปีที่แล้ว +5

    Feynman technique of integration is OP!!

    • @holyshit922
      @holyshit922 ปีที่แล้ว +2

      known for more than two centuries before Feynman

  • @PREMSINGH-bu2kf
    @PREMSINGH-bu2kf 4 หลายเดือนก่อน +1

    Why can't we use partial fraction method ??

  • @trueriver1950
    @trueriver1950 ปีที่แล้ว

    Is that a Michael Penn T shirt?