easy derivative but it took me 32 minutes

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 พ.ย. 2024

ความคิดเห็น • 266

  • @blackpenredpen
    @blackpenredpen  11 หลายเดือนก่อน +110

    If this one limit isn't crazy enough, then try 100 limits: th-cam.com/video/TglD4Y6lmQk/w-d-xo.htmlsi=lR_jfa-gI8FVO7VS

    • @muddle.
      @muddle. 11 หลายเดือนก่อน +5

      already done sir.

    • @Mandq.
      @Mandq. 11 หลายเดือนก่อน +2

      easy 🙅🏼‍♀

    • @francorota8638
      @francorota8638 10 หลายเดือนก่อน

      This is the first time I was introduced to symmetric derivatives, as my college professors never taught me about it.

  • @YoungPhysicistsClub1729
    @YoungPhysicistsClub1729 11 หลายเดือนก่อน +872

    Bro really used the limit definition, legend status

    • @blackpenredpen
      @blackpenredpen  11 หลายเดือนก่อน +105

      😆

    • @thomasblackwell9507
      @thomasblackwell9507 11 หลายเดือนก่อน +21

      That is a fact!

    • @bryantwiltrout5492
      @bryantwiltrout5492 11 หลายเดือนก่อน +30

      Pure madness too 😂😂😂 using the Limit Definition to do derivatives of Trig functions is crazy 😂😂

    • @andreasxfjd4141
      @andreasxfjd4141 11 หลายเดือนก่อน +2

      Even worse to integrate with series

    • @lukeparsons4965
      @lukeparsons4965 9 หลายเดือนก่อน +1

      I’m just gonna do a reihman sum with infinite rectangles

  • @mathmachine4266
    @mathmachine4266 11 หลายเดือนก่อน +379

    Unfortunately, this problem is unsolvable. Not because there is no solution, but because my board isn't big enough.

    • @TomFarrell-p9z
      @TomFarrell-p9z 11 หลายเดือนก่อน +26

      Why, it's a one line derivation! If you start sufficiently far to the left. 🙂

    • @unanimatereactor5014
      @unanimatereactor5014 11 หลายเดือนก่อน

      ​@@TomFarrell-p9zas long as the size of your letter approaches 0

    • @senseof_outrage9390
      @senseof_outrage9390 11 หลายเดือนก่อน +20

      I have discovered a truly marvelous demonstration of this proposition however this whiteboard is too small to contain.

    • @thexavier666
      @thexavier666 9 หลายเดือนก่อน +3

      Assume you have an infinite whiteboard

    • @unanimatereactor5014
      @unanimatereactor5014 9 หลายเดือนก่อน +3

      @@thexavier666 no it tends to infinity

  • @mcalkis5771
    @mcalkis5771 11 หลายเดือนก่อน +450

    Now you have to do an epsilon delta proof of the limit for the ultimate presentation of mathematical rigor.

    • @blackpenredpen
      @blackpenredpen  11 หลายเดือนก่อน +94

      😂

    • @yttyw8531
      @yttyw8531 11 หลายเดือนก่อน +49

      but before that you need to proof that 1+1=2

    • @MrFeast-l1d
      @MrFeast-l1d 11 หลายเดือนก่อน +20

      This would take 12 hours but would be a good video

    • @Kanin105
      @Kanin105 11 หลายเดือนก่อน +1

      Xddddddddddd

    • @adb012
      @adb012 11 หลายเดือนก่อน +4

      @@blackpenredpen ... Why do you laugh? It was not a joke.

  • @apolloo9068
    @apolloo9068 11 หลายเดือนก่อน +82

    It's reassuring that I'm not the only one prone to making calculation errors. Great video!

  • @Romeo-qk8tk
    @Romeo-qk8tk 11 หลายเดือนก่อน +212

    As an aspiring student in AP Calculus, this video was incredible to see! Awesome content! ❤

    • @blackpenredpen
      @blackpenredpen  11 หลายเดือนก่อน +25

      Thank you!

    • @Sir_Isaac_Newton_
      @Sir_Isaac_Newton_ 11 หลายเดือนก่อน +40

      You're gonna fail AP Calculus blud

    • @harrymetu2746
      @harrymetu2746 11 หลายเดือนก่อน +1

      ​@@Sir_Isaac_Newton_😂😂😂😂

    • @harrymetu2746
      @harrymetu2746 11 หลายเดือนก่อน +5

      ​@@Sir_Isaac_Newton_when Newton says it 💀

    • @obi-wankenobigoat
      @obi-wankenobigoat 10 หลายเดือนก่อน +6

      @@Sir_Isaac_Newton_I just got an A on my semester final it’s really not that hard if you pay attention (assuming good teacher)

  • @paytonholmes6019
    @paytonholmes6019 11 หลายเดือนก่อน +112

    I don’t think I was ever taught what a symmetrical derivative is in my calculus classes. Thank you.

    • @fabianwho9797
      @fabianwho9797 11 หลายเดือนก่อน

      Im no expert, but in my judgement it is rarely useful for anything, so most people never hear of it

    • @Frankie18O4
      @Frankie18O4 10 หลายเดือนก่อน

      @@fabianwho9797 you can use it in numerical applications as a second order approximation of the derivative: [f(x+h)-f(x-h)]/(2h) = f'(x) + O(h²) in contrast to [f(x+h)-f(x)]/h = f'(h) + O(h) (for h→0, assuming f∈C²)

    • @EmpyreanLightASMR
      @EmpyreanLightASMR 10 หลายเดือนก่อน +2

      I'm still a bit lost as to why he had to go that route. Maybe he said why and I missed it. The symmetrical derivative can be used for a symmetrical function about a non-differentiable point, I guess. But why does he use it for sin(x^2)?

    • @bred223
      @bred223 9 หลายเดือนก่อน +3

      @@EmpyreanLightASMRusing the normal def of deriv i got it in about 7 minutes so i assume it was just for funsies

    • @maxmustermann3938
      @maxmustermann3938 8 หลายเดือนก่อน +5

      ​​@@fabianwho9797 it is very commonly used for numeric derivatives (Central differencing), especially on i.e. images when computing gradients or laplacians or calculating the slope or the normal of a heightmap, also heavily used to solve grid-based fluid simulations

  • @dinohuntr851
    @dinohuntr851 7 หลายเดือนก่อน +4

    You have become my favorite TH-camr. Your teaching style is fun, you aren't afraid to show us your mistakes, and you are just enjoyable to watch. I can tell you genuinely want to teach, not just show off your skills. Keep up the good work!!

  • @laurensdehaan2202
    @laurensdehaan2202 11 หลายเดือนก่อน +14

    Man, your enthusiasm is SO contagious! I stood up here in front of my computer and watched the whole thing straight through, with a couple of pauses to reassure myself why some things worked out the way they did! Thank you!

    • @EmpyreanLightASMR
      @EmpyreanLightASMR 10 หลายเดือนก่อน +1

      Same! My attention span is such that I can watch a full movie over the course of several days. I saw this video and thought I'd kill a few minutes before going to make dinner and ended up watching the whole thing. I was rapt!

  • @happyhippo4664
    @happyhippo4664 11 หลายเดือนก่อน +175

    I am a 64 year old chemical engineer, still working. Math has always been my strongest subject. I enjoy these videos very much. I feel if you do not understand math that well, you will have lot more difficulty in engineering.

    • @blackpenredpen
      @blackpenredpen  11 หลายเดือนก่อน +34

      Thank you!!

    • @mesindetrabajinv666
      @mesindetrabajinv666 11 หลายเดือนก่อน +1

      Can you give me some advice for college and engineering? I’m planning to study Aerospace engineering

    • @Scorik375
      @Scorik375 11 หลายเดือนก่อน +1

      and even in many aspects of life

    • @happyhippo4664
      @happyhippo4664 11 หลายเดือนก่อน

      @@mesindetrabajinv666 Look at the occupational handbook for job outlook. Chem Engineering was hard but I've heard aerospace is even harder. My concern is, unless you are exceptional, it may be harder t find a job in that field. I started in Chemistry but switched to Chemical Engineering when I found out that BS ChEs were getting almost same pay as PhD Chemists. Probably more important, do what you enjoy.

    • @exodiara6392
      @exodiara6392 11 หลายเดือนก่อน

      Im not so sure. Im not applying so much advanced mathematics again in carrier. Even friends that were more advanced had forgotten linear algebra.

  • @JoaoVictorCavalcanteMiranda
    @JoaoVictorCavalcanteMiranda 7 หลายเดือนก่อน +3

    Thanks for the great video!
    I didn't know about symmetrical derivatives until now!
    Your excitement is worth of the challenge!

  • @jaysonbunnell8097
    @jaysonbunnell8097 11 หลายเดือนก่อน +14

    This was super awesome! I took calc 1 in highschool, and I've taken calc 2, Differential Equations, and Linear Algebra in college. I don't have many math credits left to take, so I find these videos awesome for keeping me on my math skills. Thank you!!

  • @a-manthegeneral
    @a-manthegeneral 11 หลายเดือนก่อน +9

    13:05 I'm a CS major (junior btw) watching this lol
    These videos make me feel good lol

  • @jimschneider799
    @jimschneider799 7 หลายเดือนก่อน +4

    I'm neither a student nor a teacher. I'm just an old fart engineer who loves math enough to realize I really let myself get rusty on the basics. So, although most of the math I do at work is related to number theory, I do appreciate the refresher, particularly since you tend to tackle problems in ways different than what I would use.

  • @Prism019
    @Prism019 11 หลายเดือนก่อน +3

    31:38 You can hear the relief in that "Yes!" Congrats on getting a good take!

  • @slytherinbrian
    @slytherinbrian 11 หลายเดือนก่อน +9

    This is better than anything on netflix!

  • @mcalkis5771
    @mcalkis5771 11 หลายเดือนก่อน +20

    Always a good day when you upload Steve. I always enjoy your videos where you do proofs like this.

    • @blackpenredpen
      @blackpenredpen  11 หลายเดือนก่อน +4

      Thank you so much!

  • @바다노을-o3r
    @바다노을-o3r 11 หลายเดือนก่อน +3

    Sinx^2을 두번 미분~
    첫번째미분 : 2xcosx^2
    두번째미분 : (곱의미분적용)
    2cosx^2 - 4x^2sinx^2

  • @ivantolkachev4808
    @ivantolkachev4808 11 หลายเดือนก่อน +4

    For cos(2xh) - 1 you can also do the cos^2(xh) - sin^2(xh) -1 = -2sin^2(xh) to avoid the trig in the denominator

  • @stolenmonkey7477
    @stolenmonkey7477 7 หลายเดือนก่อน +2

    1:53 this was genuinely so funny I love that lol

  • @Veefencer
    @Veefencer 9 หลายเดือนก่อน

    The only thing I like more than trying to follow all of the steps you take during the video is your sheer joy when the thing is finally done! I can't help smiling as well. Thank you for reminding me that i really like math!)

  • @garyhuntress6871
    @garyhuntress6871 11 หลายเดือนก่อน +3

    That was excellent!! I was on the edge of my seat!

  • @nathanperkin1163
    @nathanperkin1163 11 หลายเดือนก่อน +17

    I'm 15 and in year 11 (grade 10), and i haven't officially been taught calculus yet, but i find these kinds of videos super interesting!

    • @lirosphere956
      @lirosphere956 11 หลายเดือนก่อน +5

      You're in for a treat if you go deep in this channel

    • @hattapalkan8395
      @hattapalkan8395 11 หลายเดือนก่อน +1

      Proud of you brother. Keep it going

    • @idjles
      @idjles 11 หลายเดือนก่อน

      Calculus will keep you fascinated for the rest of your life - even when you are 80. Keep enjoying it.

    • @TheEGod.
      @TheEGod. 11 หลายเดือนก่อน

      im a little younger then you but i underatand very well. I remember I didnt understand them a year ago but I just couldnt stop watching these videos.

    • @diogr22
      @diogr22 11 หลายเดือนก่อน

      same here bro

  • @albertogarcia4177
    @albertogarcia4177 11 หลายเดือนก่อน +2

    Seems all ok but this finding of the second derivative using the symmetric derivative as shown is good only for x≠0, see 26:57 where you multiply and divide for 2x. Would be need complete the proof for x=0, i guess is not hard, pluging x=0 in the initial steps, see the formula is also ok

  • @argonwheatbelly637
    @argonwheatbelly637 11 หลายเดือนก่อน +14

    This is math candy. Awesome! ❤

    • @IloveUraniumSoMuch
      @IloveUraniumSoMuch 4 หลายเดือนก่อน

      Yo your comment is the thumbnail!

  • @gajamsai2957
    @gajamsai2957 8 หลายเดือนก่อน

    31:36 the excitement and happiness 👏😘 such happiness in his face very nice to see good answer sir 👍👏👏

  • @BradMurray
    @BradMurray 7 หลายเดือนก่อน +1

    This was really beautiful; thank you!

  • @velimir_ikalovic
    @velimir_ikalovic 10 หลายเดือนก่อน +1

    What amazes me is that I'm 47 yo, finished my highschool long time ago, dropped from university on second year, I don't use calculus in my life at all, and I still manage to understand most of this.

  • @Dantido
    @Dantido 11 หลายเดือนก่อน +4

    Hey there.
    Before asking this, just wanted to say I love your videos. Thanks to you I've found out about my interest in math as a hobby, and I can't commend how interesting and satisfying stuff like calculus can be when you understand it enough.
    With that out of the way, I also wanted to ask you a question,
    which definition of derivative do you prefer?
    f(x-h) - f(x)
    lim ----------------
    x->0 h
    or
    f(x) - f(h)
    lim -------------
    x->h x - h

  • @m1n3c4rt
    @m1n3c4rt 11 หลายเดือนก่อน +30

    wow, your videos are so consistent that i didn't even notice this was from an hour ago
    also 25:30 funny integral sign :)

    • @TheZerovirus1000
      @TheZerovirus1000 11 หลายเดือนก่อน

      ikr! I didn't notice until you pointed it out. I love this format

  • @gallium-gonzollium
    @gallium-gonzollium 11 หลายเดือนก่อน +13

    Me when I try a calculation and I do it the more complicated way:

  • @Owen_loves_Butters
    @Owen_loves_Butters 11 หลายเดือนก่อน +1

    18:53 Actually, you can use L'Hôpital's as long as you don't derive d/dx[sinx]=cosx from it, and there are other ways to prove the derivative of sine is cosine :)

  • @trelosyiaellinika
    @trelosyiaellinika 11 หลายเดือนก่อน +1

    Absolutely beautiful!

  • @kooshkooshyunger1438
    @kooshkooshyunger1438 11 หลายเดือนก่อน +5

    You forgot to close the parentheses of the first d/dx at 30:27

  • @anandmoodley3787
    @anandmoodley3787 11 หลายเดือนก่อน +1

    That was brilliant!. As a student I enjoyed every bit of that

  • @punitpasricha3876
    @punitpasricha3876 11 หลายเดือนก่อน +1

    We extremely appreciate your effort

  • @darktrinity9125
    @darktrinity9125 11 หลายเดือนก่อน +16

    Now prove that limit is true by the definition of a limit (epsilon delta)

  • @tortillajoe
    @tortillajoe 11 หลายเดือนก่อน +6

    Now do ε-δ 👀

  • @dudl2945
    @dudl2945 11 หลายเดือนก่อน +1

    I'm always looking for entertaining videos to watch while eating my food. Although I love maths, I would have never guessed I'll end up with this kind of stuff as best eating videos

  • @DarkTouch
    @DarkTouch 8 หลายเดือนก่อน

    im never going to use the product rule and chain rule again because i loved doing it the long way. !!!! Nice proof.

  • @johnchestnut5340
    @johnchestnut5340 6 หลายเดือนก่อน

    I do appreciate it! Thank you. I am surprised at how much I remember. I am also keenly aware that I have forgotten so very much. But thank you for the videos!

  • @spudhead169
    @spudhead169 11 หลายเดือนก่อน +6

    You've explored tetration a few times, but can the concept tetration be extended to include non-integers? If we define Tn(x) to be a tetration function such that T3(x) = x^x^x and T5(x) = x^x^x^x^x, then what happens if we plug in say 2.5 for n or even i? Is that even possible?

    • @ciple8330
      @ciple8330 11 หลายเดือนก่อน

      I researched this a bit and it seems very interesting. For anyone interested, go to Wikipedia>Tetration>Extensions (go to the 'heights' section for n) and search up "Tetration Forum" if you want to see more discussion on tetration.

  • @felipesb2
    @felipesb2 11 หลายเดือนก่อน +1

    31:22 Hahaha I thought that I was the only one who get that excited when I finish a "uncrackable problem" like this one
    good job

  • @potato4521
    @potato4521 9 หลายเดือนก่อน

    I was able to do it by applying the derivative twice so d/dx (sin(x^2)) = cos(x^2)*2x.
    Then d/dx (cos(x^2)*2x). using the product rule you get -sin(x^2)*2x*2x + cos(x^2)*2.
    This simplifies to -4x^2*sin(x^2) + 2*cos(x^2)

    • @theweirdwolf1877
      @theweirdwolf1877 5 หลายเดือนก่อน

      No shit sherlock but that’s not the point of the video

  • @HasanZekiAlp
    @HasanZekiAlp 11 หลายเดือนก่อน +1

    Hey, Guy, you’re great! While I was following you, frankly, I lost a few times, but, you delivered the ship to the quay, in sane!…

  • @kevinstreeter6943
    @kevinstreeter6943 11 หลายเดือนก่อน

    Reminds me of the time when I was asked if there is 2 ways of solving a problem, which one should be used? I replied to use the easier method.

  • @michaelroy1631
    @michaelroy1631 11 หลายเดือนก่อน +1

    very satisfying!

  • @indescribablecardinal6571
    @indescribablecardinal6571 11 หลายเดือนก่อน +1

    26:55 When both limits needed that 2x•2x/(2x•2x), and that finally connected with the answer given by chen lu, then I smirked a little c:

  • @AshX_human
    @AshX_human 11 หลายเดือนก่อน

    14:56 (x+h)^2 = x^2 + y^2 + 2xh, (x-h)^2 = x^2 + y^2 - 2xh, select alpha=x^2+y^2 and beta=2xh and you didn't need the sum to product formula :)

  • @lukaskamin755
    @lukaskamin755 7 หลายเดือนก่อน +1

    5:30 and what if the graph is not symmetrical relative to the "angle" point, say if there's a sum or difference of a linear function and an abs function with various angle coefficients. What meaning does symmetrical derivative has, will it be relevant? It doesn't seem obvious

  • @alexdefoc6919
    @alexdefoc6919 11 หลายเดือนก่อน +1

    i can aprove this worked. 30:08 before this. In my head ❤. I am really happy i can do it.

  • @oryx3
    @oryx3 11 หลายเดือนก่อน +2

    I think we're going to need a bigger board 🦈

  • @scottleung9587
    @scottleung9587 11 หลายเดือนก่อน +2

    Very cool!

  • @alexprospal8548
    @alexprospal8548 10 หลายเดือนก่อน

    I apreciate it. Thank you. We all apreciate you.

  • @joshuahillerup4290
    @joshuahillerup4290 11 หลายเดือนก่อน

    I can't wait for the follow-up video

  • @rockapedra1130
    @rockapedra1130 8 หลายเดือนก่อน

    This was endless excruciating pain followed by revelation. Sometimes you have to have faith and keep slogging! Wow! You did this as an 8 year old? Proof of alien visitation! I'm calling the History Channel!!!!!!

  • @xyz.ijk.
    @xyz.ijk. 11 หลายเดือนก่อน +1

    Chain rule? What is the Chain rule? What happened to Chen lu? Did you mean Chen lu? I miss the old days. You are still a great teacher and always had a wonderful sense of humor.

  • @samdean1966
    @samdean1966 หลายเดือนก่อน

    Fine and interesting but a little circular. You need to know the 2nd derivative EXISTS in order to apply the symmetric 2nd derivative. The way of knowing that is... pretty much the chain rule.

  • @SakretteAmamiya
    @SakretteAmamiya 11 หลายเดือนก่อน

    for the cos(2xh)-1, you can make it into -2sin(xh)^2 😀

  • @black-shadow5715
    @black-shadow5715 11 หลายเดือนก่อน +8

    Can we use the following definition to calculus the second derivative of sin(x²) ?
    f''(x) =
    lim h->0 [ (f(x+2h)-2f(x+h)+f(x)) / (h²) ]
    I don't know if using this formula would be more easier than the other one in the video, I don't have the energy to try it 😂
    And also, I don't know if the formula is right or not but I do a little demonstration to proove it and I think the formula is right...
    Please tell me 👀
    PS : sorry for my english, I'm actually french

    • @thenew3dworldfan
      @thenew3dworldfan 11 หลายเดือนก่อน

      Definitely, in fact this might be there regular second derivative not the symmetric one, which might exist even if the function isn’t twice differentiable?

  • @aymathconcoursprep
    @aymathconcoursprep 8 หลายเดือนก่อน

    this derivitive AkA fs(x) used also in Mechanics Element finite or Numerical methode to describe descritisation of grid points in the plan

  • @lol1991
    @lol1991 11 หลายเดือนก่อน +2

    I literally solved the first derivative of this last saturday (by the definition)

  • @General12th
    @General12th 11 หลายเดือนก่อน +1

    So good!

  • @jacquesduranceau8762
    @jacquesduranceau8762 11 หลายเดือนก่อน

    My students used to keep a catalog of the outrageous things I said over the year. I think "just give up" and "don't be happy to quickly" satisfy the criteria!. I have one question: Doesn't the "'symmetric derivative" (which looks akin to a central finite difference) lead to f' = 0 for absolute value at the critical point?

  • @WingedShell82
    @WingedShell82 10 หลายเดือนก่อน +1

    That was a very fun 32 minutes of my life. Honestly, this makes me want to practice doing this kind of stuff on my own just because it looks fun lol.

    • @EmpyreanLightASMR
      @EmpyreanLightASMR 10 หลายเดือนก่อน

      It's fun when you are seeing the steps you have to take. Not so much when you're standing at a crossroads. Though I learned earlier today that sometimes you just have to make a decision (a big decision, as Bob Ross would say) and stick with it until you hit a dead end.

  • @viktor-kolyadenko
    @viktor-kolyadenko 11 หลายเดือนก่อน

    It's simple. Already the first derivative of this function “jumps” very much. For x> 2pi for example.

  • @Diro_Nikhil
    @Diro_Nikhil 11 หลายเดือนก่อน

    Man never used the 2nd derivative by 1st principal…. This is so good

  • @Annnabannanna
    @Annnabannanna 11 หลายเดือนก่อน

    Omg, grea ttiming, I have an exam in 2 days on calculus.

  • @snacku7
    @snacku7 11 หลายเดือนก่อน +2

    Try e^x + lnx = 0

    • @Yougottacryforthis
      @Yougottacryforthis 11 หลายเดือนก่อน

      Nasty. How do you solve that other than numerical estimation?

    • @snacku7
      @snacku7 11 หลายเดือนก่อน

      @@Yougottacryforthis I want to see if bprp can get exact form like
      x^x = 2
      Normally it’s just numerical estimation but he used Lambert W. Can he use the lambert w or other ways to do the request in exact form?

  • @askandpushpaltiwary8537
    @askandpushpaltiwary8537 11 หลายเดือนก่อน +1

    appreciate the hard work!

  • @sphakamisozondi
    @sphakamisozondi 11 หลายเดือนก่อน

    Bro did derivative calculus using 1st principles. I'm beyond impressed

  • @joshuahillerup4290
    @joshuahillerup4290 11 หลายเดือนก่อน

    It's been a long time since I took calc 1, but I'm now getting flashbacks to a bunch of weird limit definitions

  • @eggthepro2472
    @eggthepro2472 11 หลายเดือนก่อน +1

    17:07 After the 4th line, I know why he factored out the 2sin(x^2) but i don’t necessarily get how. The 2nd term in that question doesn’t have the factor sin(x^2)?? am i just reading it wrong
    Also, I don’t understand why he uses the symmetric derivative for this function to begin with. I don’t quite know if it’s easier, but the function itself has a derivative with the domain of all real numbers, so wouldn’t it be easier to just take the derivative of that again?? i think he said that the symmetric derivative doesn’t imply the existence of the first derivative but if the first derivative does exist then what’s the point?

    • @jb31842
      @jb31842 11 หลายเดือนก่อน

      It's not the 2nd term in the numerator, but the 3rd term (which is where the "-1" then came from).
      As he explained at the beginning, if you know the normal derivative exists, then the symmetric derivative also exists, and the two are equal. Since you can choose either representation, evidently the symmetric derivative was easier to work with.

    • @eggthepro2472
      @eggthepro2472 11 หลายเดือนก่อน

      @@jb31842haha i totally just didn’t see that at all, thanks for pointing that out

  • @ThsHunt
    @ThsHunt 7 หลายเดือนก่อน +1

    When teacher asks a simple question for 10 points

  • @IraklyG
    @IraklyG 11 หลายเดือนก่อน +1

    Well, masochism is also orientation.

  • @charlievane
    @charlievane 11 หลายเดือนก่อน +1

    31:36 happiest man alive 😂

  • @gietie1694
    @gietie1694 11 หลายเดือนก่อน

    its beautiful

  • @TheZerovirus1000
    @TheZerovirus1000 11 หลายเดือนก่อน +1

    31:37 certified mic drop / pen drop moment

  • @lornacy
    @lornacy 8 หลายเดือนก่อน

    I will have to watch this more than one time!

  • @chhsel
    @chhsel 7 หลายเดือนก่อน +2

    some people enjoy using 2 sticks to start a fire....

  • @sumedh-girish
    @sumedh-girish 5 หลายเดือนก่อน

    Buy this man a bigger board

  • @mohamed.chakib_
    @mohamed.chakib_ 11 หลายเดือนก่อน

    100 double intégral and 100 triple intégral ❤

  • @Mandq.
    @Mandq. 11 หลายเดือนก่อน +1

    if anyone used chain rule and producst rule the answer would be: 2( -x^3 * sin(x^2) + cos(x^2) )

  • @toopytoopy8547
    @toopytoopy8547 11 หลายเดือนก่อน

    maybe using the fact that sin(x²)=Im(exp(ix²)) helps as d²sin(x²)/dx² = Im(d²(exp(ix²))/dx²)
    And with your method, exp(i(x+h)²)+exp(i(x-h)²)-2exp(ix²) = exp(i(x²+h²))[exp(2ixh)+exp(-2ixh)]-2exp(ix²)= 2exp(ix²)[cos(2xh) exp(ih²)-1]. Then, we have [cos(2xh) exp(ih²)-1]/h² = exp(ih²)[cos(2xh)-1]/h²+[exp(ih²)-1]/h². For the first part, we know that lim [cos(2xh)-1]/h² = -4x²*lim [1-cos(2xh)]/(2xh)² = -2x² and lim exp(ih²) = 1. For the second part, lim [exp(ih²)-1]/h² = i (as h²->0 and lim [exp(ih)-1]/h=iexp'(0)=i). Thus, lim [cos(2xh) exp(ih²)-1]/h² = -2x²+i . Therefore, d²(exp(ix²))/dx²=(-4x²+2i)exp(ix²) and finally, by taking the imagenary part, d²sin(x²)/dx² = -4x²sin(x²)+2cos(x²)

  • @kundansaurav2012
    @kundansaurav2012 11 หลายเดือนก่อน

    -4xsin(x^2)

  • @huethehue
    @huethehue 4 หลายเดือนก่อน

    17:00
    why can you factor out sin(x^2) if it isn’t in the second term

  • @Amoeby
    @Amoeby 11 หลายเดือนก่อน

    When I saw that we need to find (sin(x^2))'' I was thinking how is this video this long and then BRP pulled out the limit definition of the derivative.

  • @omintionpg3d652
    @omintionpg3d652 4 หลายเดือนก่อน

    yeah yeah im going to know the symmetric differentiation before the chain and product rule

  • @EliteCubingAlliance
    @EliteCubingAlliance 11 หลายเดือนก่อน

    13:11 "If you're also a calculus teacher, you know what to put on the final exam"
    Don't give my professor any ideas 😂

  • @sadi_supercell2132
    @sadi_supercell2132 10 หลายเดือนก่อน

    1:53 i laughed so much i almost died hahahaha , " lets just give up " haahahahah thank you 😂😂😂😂

  • @tobybartels8426
    @tobybartels8426 11 หลายเดือนก่อน

    Proving that the second symmetric derivative equals the second derivative, on the assumption that the second derivative exists, is not too bad; the function must be differentiable on a neighbourhood of the point, so you can use L'Hôpital's Rule. That reduces it to the symmetric derivative of the derivative.
    However, proving that the symmetric derivative equals the derivative, on the assumption that the derivative exists, is harder, because it might not be differentiable anywhere else, so you can't use L'Hôpital's Rule. Instead, you can use the same kind of tricks that you'd use to prove the Chain Rule.

  • @Scorik375
    @Scorik375 11 หลายเดือนก่อน

    do you know that derives as you write do not mean derives in mathematics , it means derives in physics , but to calculate a derive in mathematics can be only count with limit

  • @earl8295
    @earl8295 11 หลายเดือนก่อน +7

    Blackpenredpen be like: Im going to prove this using Epsilon Delta defintion

    • @blackpenredpen
      @blackpenredpen  11 หลายเดือนก่อน +2

      I will pass this time 😆

  • @shubhamsaini4871
    @shubhamsaini4871 11 หลายเดือนก่อน

    How to check if we can integrate a function or not?.
    Like e^cosx is non integratable so how do we know that it is non integratable

  • @lore7_03
    @lore7_03 10 หลายเดือนก่อน

    "i'm not gonna prove that limit, I'm just gonna use it"
    proceeds to prove that limit

  • @user_cy1er
    @user_cy1er 11 หลายเดือนก่อน +14

    Watching this as a 7th grader just feeling cool😎

    • @YoungPhysicistsClub1729
      @YoungPhysicistsClub1729 11 หลายเดือนก่อน

      if you understand this, I will be shocked

    • @user_cy1er
      @user_cy1er 11 หลายเดือนก่อน

      @@YoungPhysicistsClub1729a bit i guess,just didnt learn about trig(are they sin cos tan cot and other 2)

    • @windowsxpmemesandstufflol
      @windowsxpmemesandstufflol 11 หลายเดือนก่อน +2

      Remember to use the chen lu

    • @shanathered5910
      @shanathered5910 11 หลายเดือนก่อน

      @@user_cy1er sec and csc

    • @Furetto126
      @Furetto126 11 หลายเดือนก่อน +1

      Imo calculus is one of the things that can be pretty easily understood by everyone that likes maths, but it's actually hard to know how to solve problems that use it

  • @alexkalish8288
    @alexkalish8288 11 หลายเดือนก่อน

    I did this in my head before I looked at the video. It took you 32 minutes ? I don't believe it amigo - but I do understand what you want to say about limit theory.

  • @wentianxiang1155
    @wentianxiang1155 10 หลายเดือนก่อน

    Great teacher

  • @ttx5147
    @ttx5147 11 หลายเดือนก่อน +1

    just use symbolab to solve.

  • @bobbybannerjee5156
    @bobbybannerjee5156 11 หลายเดือนก่อน

    So the regular and symmetric derivatives are totally different things right?