Two Methods: With & Without Trigonometry | Find the Length of AB & AC in this Triangle

แชร์
ฝัง
  • เผยแพร่เมื่อ 8 ม.ค. 2025

ความคิดเห็น • 114

  • @mshanmukhavalli4567
    @mshanmukhavalli4567 3 ปีที่แล้ว +6

    First view and first comment

    • @PreMath
      @PreMath  3 ปีที่แล้ว +3

      Legend!
      Thank you so much Shan dear for taking the time to leave this comment. You are awesome 👍 Take care dear and stay blessed😃

  • @Jack_Callcott_AU
    @Jack_Callcott_AU 3 ปีที่แล้ว +11

    May I suggest that in the second part " Without Trigonometry" it's a little bit easier to say (8-x)/x =sqrt(3) by "special triangles " and solve for x thus avoiding using the theorem of Pythagoras and then the quadratic equation formula. Thanks for the video.

  • @DxRzYT
    @DxRzYT 3 ปีที่แล้ว +3

    Great video! Before watching the video, I used the Sine Rule to calculate this. Since 2 angles are given to us in a triangle, we can calculate the missing angle as angles in a triangle add up to 180 (which gives you 105°)
    Then just use the sine rule to find both AC and AB.
    8/Sin(105°) = AB/Sin(45°)
    rearrange:
    Sin(45°) × 8/Sin(105°) = AB
    AB = 5.9 (1.d.p)
    You can use the cosine rule here, but I just used the sine rule again as it's simpler.
    8/Sin(105°) = AC/Sin(30°)
    Rearrange [Sin(30°) is ½)
    ½ × Sin(105°) = AC
    AC = 4.1 (1.d.p)

  • @patrickjacquiot9073
    @patrickjacquiot9073 3 ปีที่แล้ว +11

    I think the best way is using : (sinA)/a=(sinB)/b=(sinC)/c, where A, B, C are angles and a, b, c corresponding opposite sides.

    • @khanht7855
      @khanht7855 2 ปีที่แล้ว

      Chuẩn không phải chỉnh

  • @wtspman
    @wtspman 3 ปีที่แล้ว +21

    You didn’t need to use Pythagoras for working out x. Side BD is sqrt(3)*x from 30-60-90 triangle rule. BC = x + sqrt(3)*x = 8. Rearraging and rationalizing the fraction gives (8(sqrt(3)-1))/2 = 4(sqrt(3)-1). No Pythagoras or quadratic formula needed.

    • @tzamiko1
      @tzamiko1 3 ปีที่แล้ว +3

      I also used this method as well.

    • @JAOLEZHIK
      @JAOLEZHIK 3 ปีที่แล้ว

      Можно еще упростить (без Пифагора): sqrt(3)=8-х

    • @MathsAanandWithChandan
      @MathsAanandWithChandan 2 ปีที่แล้ว

      I did the same

    • @klementhajrullaj1222
      @klementhajrullaj1222 2 ปีที่แล้ว

      More well is xV3=8-x. 😀😉

  • @geoellinas
    @geoellinas 3 ปีที่แล้ว +1

    I am a Greek (My great-grandfather Pythagoras :) and our teachers told us to follow the shortest path. So based on this recommendation, I have the very short solution for the non-geometric method without we write the straight line segment DB as 8-x! Using Pythagorean thm in the triangle ADB we find DB=sqrt(3)*x, so CD+DB=8 => x+sqrt(3)*x=8 => [(1+sqrt(3)]*x=8 => x=8/[1+sqrt(3)]. So we avoiding the use of the quadratic equation.

  • @arthurschwieger82
    @arthurschwieger82 2 ปีที่แล้ว +4

    Here is a third way to do this. ADB is a 30/60/90 so DB is X * √3 based on the relationship between the sides of a 30/60/90. That means 8-X = X * √3. This gives us X = 8/((√3 + 1) = 2.93. Then for side AB, we have 2 * 2.93 = 5.86. That also gives us side AC of 2.93 * √2 = 4.14.
    Thank you for providing these math problems. I like the mental workout.

    • @pawansethi139
      @pawansethi139 2 ปีที่แล้ว +1

      Best way to solve, like the most among 3 ways

    • @moonmissionpassagetototali1952
      @moonmissionpassagetototali1952 ปีที่แล้ว +1

      Exactly. I made the same comment. Set x times the square root of 3 equal to 8 minus x. Then simply solve for x (2.9282), and thereby skip all the unnecessary algebra.

  • @suheochanel7550
    @suheochanel7550 3 ปีที่แล้ว +1

    I love studying math. thank you for sharing. You have a lot of knowledge about math. keep connected.

  • @navink1913
    @navink1913 3 ปีที่แล้ว

    Thanks PreMath I’m enjoying your videos. After 15 years I’m learning math again 🙏

  • @jakkima1067
    @jakkima1067 3 ปีที่แล้ว +1

    8:08 you can see that: 8-x=x*sqrt(3). from here we can calculate that: x=8/(sqrt(3)+1). the result is the same, but the solution is faster ;)

  • @storm4426
    @storm4426 3 ปีที่แล้ว

    Nice video! I couldn’t answer this untill you show a possible resolution, you are a great teacher!

  • @malcolmmcgrath9344
    @malcolmmcgrath9344 ปีที่แล้ว

    Thank you for all these exercises you have created, they certainly exercise my creaky brain. I am looking forward to a time that I can actually solve one prior to following your instructions.
    With regard to this exercise, in the non trigonometry solution at 14:53 x=-4+4√3 becomes x=4√3-4 . Could you please explain how that sign shift is determined.

  • @a.n.timoon-sb8559
    @a.n.timoon-sb8559 3 ปีที่แล้ว +2

    There is another special triangle namely 30-60-90. You can use both triangles. x+x times square root3=8. Then x = 8/(1+root3) is approximately 2.93. Then AB is 2 times 2.93 is 5.86 and AC is square root 2 times 2.93 is 4.14.

    • @guyver268
      @guyver268 11 หลายเดือนก่อน

      That's how I did it. Pretty quick.

  • @johnbrennan3372
    @johnbrennan3372 3 ปีที่แล้ว

    A pleasure to read.and follow. Terrific teacher.

  • @emilmana9917
    @emilmana9917 2 ปีที่แล้ว

    I figured that 8 is about 2.73X and x equals to about 2.92 because of something in 8:20 minute.
    if you notice the left side of the triangle is "a" times square root of 3 but a is actually "x".
    8 = x + x*sqrt(3) = 2.7x
    you get that x is 2.92 and from that you get the other numbers

  • @williamwingo4740
    @williamwingo4740 3 ปีที่แล้ว

    Here's a sort of "combination" solution:
    In the 30-60-90 triangle (ABD), if the side opposite the 30 degree angle is 1, then the hypotenuse is 2 and the adjacent side is sqrt(3). This follows from the fundamental identity sin 30 degrees = 1/2, and the Pythagorean theorem.
    So if opposite side is x and the adjacent side is 8 - x, we have x sqrt(3) = 8 - x;
    add x to both sides: x sqrt(3) + x = 8;
    collect terms: x (sqrt(3) + 1) = 8;
    divide both sides by (sqrt(3) +1): x = 8 / (sqrt(3) +1);
    remembering that the product of the sum and the difference of the same two numbers is the difference of their squares, we multiply top and bottom by (sqrt(3) -1) and get
    x = 8 (sqrt(3) -1) / ((sqrt(3) + 1) (sqrt(3) -1))
    = 8 (sqrt(3) -1) / (3 - 1)
    = 8 (sqrt(3) -1) / 2
    = 4 (sqrt(3) -1)
    = 4 sqrt(3) - 4.
    So side AB = 2x = 2 (4 sqrt(3) - 4) = 8 sqrt(3) - 8;
    and side AC = x sqrt(2) = sqrt(2) (4 sqrt(3) -4) = 4 sqrt(2) (sqrt(3) -1).
    No calculator, no trig tables (probably hard to find nowadays anyhow), no law of sines, and no quadratic formula.
    Thank you, ladies and gentlemen; I'll be here all week.

  • @nicolae7186
    @nicolae7186 3 ปีที่แล้ว

    You have chosen the ideal case for this type of problem:))

  • @fongalex6639
    @fongalex6639 3 ปีที่แล้ว +4

    Nice work
    In general if 2 angles and 1 side are given, use sine law
    If 1 angle and 2 sides are given, use cosine law

  • @basavarajchikkamath9070
    @basavarajchikkamath9070 2 ปีที่แล้ว

    Sir very good explanation. 🙏🙏

  • @difana52
    @difana52 3 ปีที่แล้ว +2

    AB=2X AC=X√2
    8-X=X√3 AC=8√2/√3+1
    X=8/√3+1 AC=8√2(√3-1)/2
    AC=4√2(√3-1)
    AC=4√6-4√2

  • @КатяРыбакова-ш2д
    @КатяРыбакова-ш2д 2 ปีที่แล้ว

    Большое спасибо за подробное объяснение. В нашей школе применяют 1 способ в текущей работе, а второй на экзамене, там нельзя применять калькулятор. На экзамене ответы были бы: 8*(V3-1); 4*(V6-V2).

  • @abdellahaitouahmane1593
    @abdellahaitouahmane1593 3 ปีที่แล้ว

    thank you, i never heard this Law befor
    thank you so match

  • @fredancajas6323
    @fredancajas6323 3 ปีที่แล้ว

    Can you show us how to derive the quadratic equation? Thank you!

  • @Volti21
    @Volti21 3 ปีที่แล้ว

    Yes. Figured it out so quickly by sine law.
    But because of rounding, it was a slightly different for me. c= 5,86 cm a = 8,25 cm and b = 4,13 cm

  • @RashmisABCD
    @RashmisABCD 3 ปีที่แล้ว

    This is great channel perfect for who likes maths like me. You explained very well. Lkd

  • @eduardoteixeira869
    @eduardoteixeira869 2 ปีที่แล้ว

    I do not know if already exist in other commentary the following sugestion
    In the first solution using trigonometry if we observe that 105 is the same as 60+45 it is possible to calculate the triangle side values without using decimal aproximations.
    Thank you

  • @242math
    @242math 3 ปีที่แล้ว

    very well done bro, thanks for sharing

  • @VolkGreg
    @VolkGreg 3 ปีที่แล้ว +1

    Angle A = 180° - 45° - 30° = 105°
    sin 105° = sin 75° = cos 15° = √((1 + cos 30°)/2) = √((1 + √3/2)/2) = √(2 + √3)/2 = (√6 + √2)/4 = 1/(√6 - √2)
    AB/sin 45° = AC/sin 30° = 8/sin 105° = 8(√6 - √2)
    AB = 8(√6 - √2)*(1/√2) = 8(√3 - 1) = 5.8564
    AC = 8(√6 - √2)*(1/2) = 4(√6 - √2) = 4.1411

  • @08nguyengiabao85
    @08nguyengiabao85 2 ปีที่แล้ว

    8:09 If a = x, u can see 8 - x = x sqrt(3)

  • @ssa1591
    @ssa1591 3 ปีที่แล้ว +1

    По теореме о сумме углов треугольника /_А=180°-(45°+30°)=105°.
    По теореме синусов:
    АС=8sin30°/sin105°=....=4/cos15°;
    АВ=8 sin45°/sin105°=...=4\|2/cos15°.

  • @szkoclaw
    @szkoclaw 3 ปีที่แล้ว +1

    AB = 2x is the same as saying sin(30°)=1/2 so it is exactly the same method as using trigonometry after all.
    I would notice that 60° on the top will create an equilateral triangle with a new point E that is on AB at x distance from A. Then triangle DBE is isosceles with equal sides equal to x, making AB=2x.
    Though 30-60-90 comes from the same idea, so I guess it's still the same. But, they don't teach 30-60-90 theorem in Polish schools so I had to do without it ;)

    • @zzzman9287
      @zzzman9287 3 ปีที่แล้ว

      That's exactly what I thought. I think that your method of proving AB=2x via constructed equilateral and isosceles triangles is the proper way to do it without trigonometry.

  • @aakashkarajgikar3935
    @aakashkarajgikar3935 3 ปีที่แล้ว +1

    3:05 I like that thunderstorm sound, it is cool. I mean, if it is a thunderstorm.

    • @PreMath
      @PreMath  3 ปีที่แล้ว +1

      You are correct! Thunderstorms in Arizona, USA!
      Love and prayers from the USA! 😃

  • @michaelstubbs7563
    @michaelstubbs7563 ปีที่แล้ว +1

    From your diagram, you can solve it simply by x*SQRT(3)= 8 - x. So that works out to be x = 8/(SQRT(3)+1) = 2.928.

  • @guneesh0601
    @guneesh0601 2 ปีที่แล้ว +1

    Draw AD perpendicular to CB-
    Let CD = x
    DB = 8- x
    In Triangle ADC:-
    tan 45 = AD/x
    AD= x
    In Triangle ADB:-
    tan 30 = AD/ 8-x = x/8-x
    So,
    x/8-x = 1/sqrt(3)
    x* sqrt(3) = 8-x
    x = 8/ sqrt(3) +1
    x = 2.928
    So, CD = 2.928 and DB = 5.072
    Sin 45 = 2.928/ AC
    AC = 4.14
    Sin 30 = 2.928/AB
    AB = 5.856
    ~ 5.86

  • @billylowgroundvytaszukas5797
    @billylowgroundvytaszukas5797 3 ปีที่แล้ว

    nice rainy wether at minute 3.27 in window behind speaker in India (or Pakistan) i love it

  • @subhampaul1041
    @subhampaul1041 3 ปีที่แล้ว +1

    Impressive solution

    • @PreMath
      @PreMath  3 ปีที่แล้ว +1

      So nice of you Subham dear
      Thank you so much for taking the time to leave this comment. You are awesome 👍 Take care dear and stay blessed😃

  • @kennethstevenson976
    @kennethstevenson976 2 ปีที่แล้ว

    I returned to this problem with the accumulated knowledge from your problems to this point and decided to construct a vertical AD and label it (X). You then have a 45,45,90 triangle on the left and a 30,60,90 triangle on the right with a common side (X). When you mark the side ratios on the left you have X, X, XRoot2 on the left and X , XRoot3 and 2X on the right. You can now find the relationship CD + DB = 8 ; X + XRoot3 =8. When you solve this equation you get X = 4(Root3 - 1). Therefore AB = 8(Root3- 1) and AC = 4(Root6 - Root2). AC = 4.141 ; AB = 5.856.

  • @bhumaiahgude8709
    @bhumaiahgude8709 2 ปีที่แล้ว

    After deciding “x” value, if you compare DB, x*root of 3= 8-x, from this we get x directly and easily.

  • @julienvernes8369
    @julienvernes8369 2 ปีที่แล้ว

    A more rapid solution without solving quadratic equation, using the geometry of the special traingle ADB: x+x*sqrt(3)=8

  • @salimk2002
    @salimk2002 2 ปีที่แล้ว

    L'astuce : > AB= Racine (2)× AC
    > L'angle (AB, AC) = 105°
    >appliquer théorème gle de phytagore au triangle (ABC)

  • @shumzai
    @shumzai 3 ปีที่แล้ว

    split BC into x+y, such that x+y = 8. y=sqrd(3) * x because tan(60) = sqrt(3).... so on and so forth

  • @mustafizrahman2822
    @mustafizrahman2822 3 ปีที่แล้ว

    AB=5.85640.... and AC= 4.14110....... However, very easy question. I needn't think more about it.
    ( Actually I know the rule a/sinA= b/sinB= c/sinC =2R. Though I am a 10th grade student, I am solving to 11 or 12 grade problems. So, I know the theory. Good question. Thanks.

  • @gvrelt
    @gvrelt 3 ปีที่แล้ว

    Please select difficult problems from previous competitive exams.

  • @broytingaravsol
    @broytingaravsol 3 ปีที่แล้ว +2

    it's just √3x+x=8

  • @SuperYoonHo
    @SuperYoonHo 2 ปีที่แล้ว

    fantastic

  • @mohanramachandran4550
    @mohanramachandran4550 3 ปีที่แล้ว +1

    The Both methods are shows difficult
    Another simple &
    easy way to find AC, AB
    In triangle ADC 45° 45° 90°
    Let AD = X, CD = X, AC = X√2
    In triangle ADB
    Let AD = X, DB = X√3, AB = 2X
    In triangle ABC
    CB. = ( CD+DB ) = 8
    ( CD + DB) = X + X√3. = 8
    X = 8 ÷ 2.732 = 2.93
    AC = X√2. = 2.93 * 1.414
    = 4.14
    AB = X2 = 2.93*2 = 5.86
    Thank you sir.

  • @plamenpenchev262
    @plamenpenchev262 ปีที่แล้ว

    No need for quadratic eq.
    AB = x
    AH (altitude) = x/2
    CH= AH = x/2
    HB = sqrt(3)/2*x
    (CH+HB) = (x/2 + sqrt(3)/2*x)= 8, . . .

  • @lzuluaga6064
    @lzuluaga6064 3 ปีที่แล้ว

    Si reemplazas 8-x por raíz cuadrada de 3 por x, creo es más fácil.

  • @moonmissionpassagetototali1952
    @moonmissionpassagetototali1952 ปีที่แล้ว

    Why didn’t you set x times the square root of 3 equal to 8 minus x and solve for x?
    Here x equals 8 divided by 1 plus the square root of 3, or 2.9282. This also equals 4 times the square root of 3 minus 4, but without all the unnecessary algebra.

  • @מאמין-ג6נ
    @מאמין-ג6נ 2 ปีที่แล้ว

    let AB=x and AC = y
    0.5 *y*8*sin45 = 0.5 *x *8*sin30
    then x= y square root 2
    with Al Kashi you have
    x2 = y2 +64 -8ysquare2 so 2y2 = y2 +64 -8square 2
    y is positive so y = 4square 6 - 4square 2
    and x = 8square 3 -8
    if i didn t make a mistake

  • @johnbrennan3372
    @johnbrennan3372 3 ปีที่แล้ว +1

    8-x =sq root 3 multiplied by x. So x = 4 by sq root 3 - 4 etc.

  • @yegnanarayana
    @yegnanarayana 2 ปีที่แล้ว

    Instead of using phythogorous theorem we canuseDB=Square root of 3times x square root of 3x+X=1.732x=8 and then solve for x```````

  • @charlesbromberick4247
    @charlesbromberick4247 3 ปีที่แล้ว

    Good basic exercise for the brain - not real hard, something like 10 mental push-ups

  • @enricorattalino8174
    @enricorattalino8174 2 ปีที่แล้ว

    DB = xsqrt (3) , so CB = x+ xsqrt (3) = 8 than x = 2,93 AB = 5,86 AC = xsqrt (2) = 4,14

  • @abdinaasirciise2787
    @abdinaasirciise2787 3 ปีที่แล้ว

    Tʜᴀɴᴋs ᴛᴇᴀᴄʜᴇʀ👍

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    #lawofsines #sine

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    b = 8 × (sin (30°) ÷ sin (105°)) = 8 × (0.5 ÷ sin (105°)

  • @faimak848
    @faimak848 2 ปีที่แล้ว

    Use sin law frist to find side b or c.

  • @williamwingo8952
    @williamwingo8952 2 ปีที่แล้ว

    No peeking, no quadratic equations, and no law of sines or cosines: just two special triangles and straight algebra.
    Drop a perpendicular from A to the base at point D. Both triangles so formed are "special" triangles: ACD is 45-45-90 and ABD is 30-60-90.
    Let the right segment of the base DB be x and then the left segment CD is 8 - x. The altitude AD is also 8 - x because triangle ACD is isosceles.
    Then by the properties of the special triangles, length AB is 2(8 - x) [1] and length AC is sqrt(2)(8 - x) [2].
    Considering segments AD and DB, we have
    AD = 8 - x; and also, by the 30-60-90 triangle property:
    AD = x/sqrt(3); equate the two expressions,
    8 - x = x/sqrt(3); multiply both sides by sqrt(3),
    sqrt(3)(8 - x) = x, multiply out on the left,
    8 sqrt(3) - x sqrt(3) = x;
    8 sqrt(3) = x + x sqrt(3) = x (1 + sqrt(3)); invert to get all the unknowns on the left,
    x (1 + sqrt(3)) = 8 sqrt(3); multiply out on the left,
    x = 8 sqrt(3)/(1 + sqrt(3)); multiply on top and bottom by (sqrt(3) -1),
    x = 8 sqrt(3)(sqrt(3) - 1)/(3 - 1); multiply out and collect terms,
    = ((8)(3) - 8 sqrt(3))/2; carry out the division by 2,
    = ((4)(3) - 4 sqrt(3))/1;
    = 12 - 4 sqrt(3).
    Now 8 - x = 8 - 12 + 4 sqrt(3)
    = 4 sqrt(3) - 4
    = 4(sqrt(3) - 1). So using equation [1] above,
    AB = 2(8 - x) = 8 (sqrt(3) - 1); and from equation [2] above,
    AC = sqrt(2)(8 - x);
    = sqrt(2)(4 sqrt(3) - 4);
    = 4 sqrt(6) - 4 sqrt(2);
    = (4)(sqrt(6) - sqrt(2)).
    These are the exact answers. The approximate decimals are AB = 5.8564 and AC = 4.1411, approximately.
    At this point I ran the video and it looks like we agree. I chose x and 8 - x the opposite way; but then, I'm left-handed. It works out the same either way.
    Thank you, ladies and gentlemen; I'm here all week.

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    #RightTriangle

  • @harryzero1566
    @harryzero1566 3 ปีที่แล้ว

    Draw the triangle with accurate measurements given of angles and the length of bottom line. Angle A should be 105 degrees. If correct,measure the other lines using the same scale you used to measure 8 at the bottom.

  • @mendozajovy
    @mendozajovy 3 ปีที่แล้ว

    Sine Law. Angle A is 115 degree.

  • @abodomar19
    @abodomar19 3 ปีที่แล้ว

    sin 45 not equal that you write ,also sin 105 equal negative you write

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    #angle

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    Right triangle ADC

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    8÷sin(105°) = c ÷ sin (45°)

  • @khaledlotfy3311
    @khaledlotfy3311 3 ปีที่แล้ว

    8-x=x * sqrt(3) and continue

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    #Trigonometry

  • @nirmalajagdish8901
    @nirmalajagdish8901 3 ปีที่แล้ว

    Vvnice true thanks

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    Square root of 192 = 8 × square root of 3

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    #QuadraticEquation

  • @nw8757
    @nw8757 3 ปีที่แล้ว

    The 3rd Method,I follow the 2nd Method ,at last I use x/8-x=tag30=√3/3,then x get the answer 。

  • @mumtazrasul8263
    @mumtazrasul8263 3 ปีที่แล้ว

    Use Sin Rule to solve.

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    #Pythagoras #PythagoreanTheorem

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    x^(2) + 8x - 32 = 0

  • @ايمنكويكي
    @ايمنكويكي 3 ปีที่แล้ว

    Pythagore:(AB×AB)+(AC×AC)

  • @geekchick4859
    @geekchick4859 3 ปีที่แล้ว

    Um…both used trig. Special triangles are trig.

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    30°; 45°; 105°

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    sin (30°) = 0.5

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    sin (45°)

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    alpha = 105°

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    Square root of 3

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    sin (105°)

  • @ساميمحمودزغلولزغلول
    @ساميمحمودزغلولزغلول 2 ปีที่แล้ว

    مجموع درجات المثلث 180 درجة

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    8-x

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    Square root of 192

  • @jyotidevi2290
    @jyotidevi2290 3 ปีที่แล้ว

    Hello

  • @manjunathaba9747
    @manjunathaba9747 2 ปีที่แล้ว

    Nice

  • @khanht7855
    @khanht7855 2 ปีที่แล้ว

    Bài toàn này chỉ khoảng 3 phút giải xong.

  • @shaistabadar3529
    @shaistabadar3529 2 ปีที่แล้ว

    Is ki length apni garnh oqat say nikalay america dunya ab america ki garnh pa thi

  • @gvrelt
    @gvrelt 3 ปีที่แล้ว

    Very lengthy.

  • @alster724
    @alster724 3 ปีที่แล้ว

    Trigo is quicker

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    8 × square root of 3

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    alpha + 75° = 180°

  • @theophonchana5025
    @theophonchana5025 3 ปีที่แล้ว

    x variable

  • @albertyeung5787
    @albertyeung5787 3 ปีที่แล้ว

    tedious

  • @manjunathaba9747
    @manjunathaba9747 2 ปีที่แล้ว

    Nice