Math Olympiad Question | Solve 2^a -2^b=2016 | Learn how to solve Olympiad Question easily

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น • 327

  • @rishitsrivastava-study9441
    @rishitsrivastava-study9441 2 ปีที่แล้ว +31

    You re' Awesome...Love from INDIA

    • @PreMath
      @PreMath  2 ปีที่แล้ว +4

      Thanks for the visit
      So nice of you, Rishit
      Thank you for your feedback! Cheers!
      You are awesome. Keep it up 😀
      Love and prayers from the USA!

  • @anushkaaloz
    @anushkaaloz 2 ปีที่แล้ว +77

    Hi sir. I solved this equation in a different way, splitting 2016 into its factors. Doing so , I got 2⁵.3².7 , which I further wrote as 2⁵.(2³+2⁰).(2³-2⁰) and then using the identity of (a+b)(a-b) I got 2ª - 2^b = 2¹¹ - 2⁵. Thanks a lot for the wonderful problems..helping us students a lot

    • @comrade5182
      @comrade5182 2 ปีที่แล้ว +3

      Wow

    • @vickykothekar3321
      @vickykothekar3321 2 ปีที่แล้ว +3

      You are realy clever

    • @denisdaly1708
      @denisdaly1708 2 ปีที่แล้ว +3

      well done. Very nice. Clever.

    • @Princekumar-iy8nh
      @Princekumar-iy8nh 2 ปีที่แล้ว +3

      Nice

    • @kannonguyen9209
      @kannonguyen9209 2 ปีที่แล้ว +7

      This is great. But in this way, we still need one more thing: proving this is only one result.

  • @montynorth3009
    @montynorth3009 2 ปีที่แล้ว +36

    2^a to be bigger than 2016.
    First value of "a" to meet this requirement.
    This was 2^11 = 2048.
    2048 - 2016 = 32 = 2^5
    The first power of 11 worked!

    • @PreMath
      @PreMath  2 ปีที่แล้ว +4

      Thank you for your feedback! Cheers!
      You are awesome, Monty. Keep it up 😀

    • @suyashmishra2761
      @suyashmishra2761 2 ปีที่แล้ว +1

      Yes, first value of a came to mind is 11, I think you Solve it orally👍👍

    • @denisdaly1708
      @denisdaly1708 2 ปีที่แล้ว

      Ya, I did the same. Did it in my head. I just wanted a feel for what the answer might be. Worked out.

    • @paulochavesdequeiroz7355
      @paulochavesdequeiroz7355 2 ปีที่แล้ว

      Gostei desse método. Apenas vejo que seria por tentativas, que nesse caso já encontrou na primeira a diferença sendo uma potência de base 2. Mas se não encontrasse teria que tentar o segundo valor de "a", o terceiro, ... até encontrar como diferença uma potência de base 2.

  • @kennethstevenson976
    @kennethstevenson976 2 ปีที่แล้ว +3

    I prime factored 2016 , and could see that 63 was not a power of 2. The substitution of a = b+k and resulting factoring enabled you to express an odd number. I had seen one of these problems before but could not remember how to express the odd factor. I will remember this in the future. Well done.

  • @philippenachtergal6077
    @philippenachtergal6077 2 ปีที่แล้ว

    0:00 Let's try
    First power of 2 > 2016 is 2048
    and 2048 - 2016 = 32
    This gives the easy solution a=11 and b=5
    Now for any n>=12, 2^n - 2^(n-1) = 2^(n-1) >= 2048 > 2016
    This means that for any a >= 12, we have (a-1) < b < a so b cannot be a natural and our solution above is the only solution.

  • @natewright1197
    @natewright1197 2 ปีที่แล้ว +28

    I think there is an easier way to go about this.
    2^a has to be larger than 2016. So start listing powers of 2 that are larger than 2016.
    The first number that fulfills this is 2048
    Then solve 2048 - x = 2016...x=32. 32 is also a power of 2, so we are done
    2^a = 2048...a=11
    2^b = 32...b=5

    • @PreMath
      @PreMath  2 ปีที่แล้ว +6

      Many approaches possible.
      Thank you for your feedback! Cheers!
      You are awesome. Keep it up 😀

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

    • @crir85
      @crir85 2 ปีที่แล้ว +1

      That's how i've done it as well

    • @monroeclewis1973
      @monroeclewis1973 2 ปีที่แล้ว +3

      Brute force is the last resort. Your approach works in this case because the numbers are small. What if the difference was a 10 or 20 digit number instead of 2016? Then whose method-yours or the professor’s-is better?

    • @Copernicusfreud
      @Copernicusfreud 2 ปีที่แล้ว

      That is almost exactly what I did Nate. I went a little bigger with 2 ^ 12 = 2 ^6 x 2^6 = 64 x 64 = 4096. 4096 - 2016 = 2080, and that is not a valid solution. I then divided 4096 by 2 to go with 2 ^ 11 to get 2048. 2048 - 2016 = 32. 2^5 = 32. Therefore, a = 11 and b =5.

  • @manfredbartl8052
    @manfredbartl8052 2 ปีที่แล้ว +20

    Interesting! I solved it just the visual way. 2016 is binary 11111100000, so I just have to pick the next higher power of two, 100000000000, and subtract from it the smaller power of two, that's capable of just swapping 0s to 1s on the following 5 positions, 100000. So I only have to count the 5 1s (needed to swap back to from 0 in the new number by subtraction) and 11 0s in the new number. So 2¹¹ - 2⁵ => a=11, b=5 .

    • @bobbun9630
      @bobbun9630 2 ปีที่แล้ว +3

      Doing the binary conversion seems like the hard way if you know your powers of two that well in the first place. Of course, just immediately recognizing the answer isn't something you can put down on paper to convince anyone you legitimately solved the problem.

  • @kabirdesarkar8246
    @kabirdesarkar8246 2 ปีที่แล้ว +4

    Nice method. I have an alternative solution.
    Prime factorization of 2016 = 2^5 * 3^2 * 7
    = 2^5 * (2^3 + 1) * (2^3 - 1)
    = 2^5 * (2^6 - 1) [difference of squares]
    = 2^11 - 2^5
    a = 11, b = 5.

  • @kot_begemot
    @kot_begemot 2 ปีที่แล้ว +1

    Two shortcuts that make this problem a bit easier:
    The closest power of 2 that is greater than 2016 is 2048 or 2^11, and 2048 - 2016 = 32 = 2^5, so a = 11, b = 5.
    Alternatively, writing 2016 in binary and knowing how binary arithmetic works may provide a great hint: 2016 = 1,111,100,000 = 10,000,000,000 - 100,000 = 2^11 - 2^5.

  • @ralkadde
    @ralkadde 2 ปีที่แล้ว +8

    Thank you! I enjoyed your solution.
    A more "nerdy" than mathematic approach comes as followed:
    1. A power of 2 (2^n) has only one "1" in binary representation (a "1" and n-1 0's)
    2. 2016 is "0111 1110 0000" . Add 1 to the last "1" in this number to get a power of 2.
    3. "0111 1110 0000" + "0010 0000" = "1000 0000 0000", or 2016 + 32 = 2048.
    4. a = log2(2048) = 11 and b = log2(32) = 5.

    • @PreMath
      @PreMath  2 ปีที่แล้ว +6

      Excellent! Nice approach..
      Thank you for your feedback! Cheers!
      You are awesome. Keep it up 😀

    • @radhikar6690
      @radhikar6690 2 ปีที่แล้ว +1

      Hi Sir,
      x^m- x^n= x^n and n= m-1
      X=?

  • @williambunter3311
    @williambunter3311 2 ปีที่แล้ว +19

    Wow!! Sir, you are like the Sherlock Holmes of mathematics. i love the way you gradually build up your evidence and then assemble it into a conclusion. This question is a bit advanced for me, because I would never have thought to approach this problem so systematically. Nevertheless, I thoroughly enjoy your explanations of how facts fit together, even if I get a bit lost sometimes. Thank you for posting your brilliant videos. It was through your videos that I learnt how to solve quadratic equations. I love doing them, especially the completing the square method. May God bless you in the Lord Jesus Christ.

    • @PreMath
      @PreMath  2 ปีที่แล้ว +2

      You're welcome!
      Glad you enjoyed it!
      Thank you for your feedback! Cheers!
      You are awesome, William. Stay blessed 😀
      Love and prayers from Arizona, USA!

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

    • @pierregiordanino2700
      @pierregiordanino2700 2 ปีที่แล้ว +1

      an easier way is to replace 2016 by 2048-32, means 2^11 - 2^5
      We have then to solve
      2^a - 2^b = 2^11 - 2^5
      by identifying , we can find
      a=11
      b=5

  • @samitsikdar498
    @samitsikdar498 2 ปีที่แล้ว

    The sum is really great, at the beginning I could understand nothing of the sum and was totally confused, but the way you explained is really appreciable.

  • @alesb51
    @alesb51 2 ปีที่แล้ว +7

    Hello, Sir!. Love and respect from Italy. Since I'm particularly interested in these kind of exercises and all the stuff about math olympiads, would you mind suggesting me some resources to study the theory?. I struggle a bit with some questions, but I still adore you content. Thank you, sir. Keep going!

    • @PreMath
      @PreMath  2 ปีที่แล้ว +5

      Hello dear, I don't know of any good book that I could recommend you. If I find any quality book, sure I'd love to share with you. Meanwhile, I'd recommend you to watch all the videos (on daily basis) in premath channel to get the deeper understanding. Thanks for asking. I wish you all the best.
      You are awesome. Keep it up 😀
      Love and prayers from the USA!

    • @Alexander-tx4bw
      @Alexander-tx4bw 2 ปีที่แล้ว +1

      I participated in the Austrian Mathematical Olympiad. The geometry teacher we had at our preparation course highly praised the book „Euclidean Geometry in Mathematical Olympiads“ by Evan Chen. I plan on getting it myself to practice for next year’s olympiad, but from what I’ve seen it is rather pricey at about 50€ on Amazon. Unfortunately, the other teachers didn’t mention any books and instead handed out self-written scripts only available to those who participate at the olympiad. Some of these scripts are available at the website of Austrian olympiad though, so you could check if the Italian olympiad offers similar studying materials or mentions any recommended books for studying.

    • @alesb51
      @alesb51 2 ปีที่แล้ว

      @@Alexander-tx4bw The book you mentioned is quite expensive and apparently not really simple to find: it must be remarkable!. Thank you so much for your recommendation!.

  • @JPTaquari
    @JPTaquari 2 ปีที่แล้ว +1

    Herr Professor, how are you?
    I could have thought the way you thought, which is simple, no need to do any math. (2048 - 32 ). But it didn't occur to me, what occurred to me was another solution that also worked ( 4096 - 2080) , where b = 11.02237. As it was the first time I saw such a question, my brain from now on will reason more simply and I will never be wrong again. Hugs from the South of Brazil.

  • @crustyoldfart
    @crustyoldfart 2 ปีที่แล้ว +5

    In problems of this kind, I think that a good strategy is to first factorize the constant term so that
    2016 = 32 * 63 = 2^5 * (64 -1 ) = 2^5 * (2^6 -1)
    from which we can write the values of a and b by inspection : a = 2^5 * 2*6 = 2^11 ; b = 2^5

    • @buileminhquoc1675
      @buileminhquoc1675 2 ปีที่แล้ว

      And you must prove this is only one result.

    • @crustyoldfart
      @crustyoldfart 2 ปีที่แล้ว +1

      @@buileminhquoc1675 a and b are natural number as a given Also radical solutions are excluded since 2016 in an integer..

  • @davidseed2939
    @davidseed2939 2 ปีที่แล้ว +9

    Representing a number as the sum or difference of different powers of 2 is equivalent to converting to binary. It is a unique transformation.
    So look for the power of 2 that is next higher than 2016.
    It is 2048 ie 2^11
    2048-2016= 32=2^5
    Thus a=11 b=5

  • @agrsivboredom
    @agrsivboredom 2 ปีที่แล้ว +3

    I'm deeply thankful for your content, it's a blessing from God that you exist to share your knowledge so that everyone who watches you can learn a little more each day. Cheers, mate!

    • @PreMath
      @PreMath  2 ปีที่แล้ว +2

      You're welcome!
      Thank you for your feedback! Cheers!
      You are awesome, Lucas. Keep it up 😀
      Love and prayers from the USA!

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

  • @СветланаНосова-в1ц
    @СветланаНосова-в1ц 2 ปีที่แล้ว

    Hello, Sir! Love and respect from Russia. We adore you video. Thank you, sir, for your content. Keep going!

  • @Postoronnim-VV
    @Postoronnim-VV 2 ปีที่แล้ว +3

    Всё гораздо прозаичнее. Находим ближайшую степень 2, больше, чем 2016. Из уроков информатики помню, что 2^10 =1024, значит 2^11=2048. => a=11. 2048-2016=32=2^5. b=5
    2^10 - 2^5 = 2016. Это решается в уме

    • @U235-f9r
      @U235-f9r 2 ปีที่แล้ว

      Во первых в таком решении нет гарантии, что ближайшая степень двойки выше 2016 окажется первым корнем, а во-вторых нет доказательства, что подобранное решение единственно возможное и нет других действительных корней уравнения

  • @MuhammadAshraf-mh5dl
    @MuhammadAshraf-mh5dl 2 ปีที่แล้ว +2

    One thing I have learnt for the first time that the multiplefixation of even and an odd number is equal to the corresponding numbers on the other side of the equation...
    Is there some rule accordingly....?

  • @joseconceicao1301
    @joseconceicao1301 2 ปีที่แล้ว

    When he related (a) and (b) to the set of Naturals, it became easy, and since the bases were the same, I applied the trial and error method, as friends call "to apply the Bézout", even though Bezout has no application in the case, but it's how we usually work the issues that we need more attention...2¹⁰=1024, 2ª = 2¹¹=2048; and 2⁵=32...but your explanation cleared all doubts!!! a=b+k

  • @philipkudrna5643
    @philipkudrna5643 2 ปีที่แล้ว +3

    10 seconds: you get 2016 if you substract 32 from 2048. 2048=2^11, 32=2^5. So a=11 and b=5. Since we were looking for natural numbers, I tried the most obvious solutions for powers of two first. (By the way: if you count binary, you can count to 1023 with 10 fingers… somehow, this never got a widespread thing, except maybe for early computer programmers…) 😀

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Great
      Thank you for your feedback! Cheers!
      You are awesome, Philip. Keep it up 😀

    • @mahtabalam7834
      @mahtabalam7834 2 ปีที่แล้ว

      I would love to learn binary approach. Could you please suggest any good resources on this please? Also how do you solve this problem using binary system? Please enlighten me.

    • @philipkudrna5643
      @philipkudrna5643 2 ปีที่แล้ว +1

      @@mahtabalam7834 I do not have a source but it is actually quite simple: In our decimal system, each number is made up of digits that can take 10 different forms (0,1, 2,... 8, 9). If you take the nuber 321, it actually says "take 3 times 10³ plus 2 times 10² plus 1 time 10^0" which gives you 300+20+1=321. In the binary system you don't have 10^something, but 2^something and you only have the digit forms 0 and 1. (This is why it is used in IT, as a current can flow or not, on vs off.) The number 5 would be "101" in binary code, as it is 1*2^2+0*2^1+1*2^0 or 4+0+1=5. 31 would be "11111" or 1*2^4+1*2^3+1*2^2+1*2^1+1*2^0 or 16+8+4+2+1=31. This means that you can count to 31 with just one hand. 1 is our thumb extended. 10 is indexfinger extended, thumb retracted. 11 (which is 1+2=3) is both thumb and indefinger extended. And so on. Extending all 5 fingers of one hand is 11111 or 31. If you combine this with our second hand, you can count until 1023 as "1111111111" stands for 2^0+2^1+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9 or 1+2+4+8+16+32+64+128+256+512= 1023. (As you only have 10 fingers, you can only go up to 2^9, as you have to start with 2^0...)

    • @mahtabalam7834
      @mahtabalam7834 2 ปีที่แล้ว

      @@philipkudrna5643 wow! It's awesome. Will try it now. Thank you so much sir.

  • @sanjoystore9799
    @sanjoystore9799 2 ปีที่แล้ว +1

    Sir, awasom an easier method for a difficult problem,you are great.

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome, Sanjoy. Keep it up 😀

  • @erickbourdin4039
    @erickbourdin4039 2 ปีที่แล้ว +1

    Thank you for this question
    Knowing that 2 to the power of 10 is 1024 , 2 to the 11 is 2048. 48-16 = 32 = 2 to p of 6
    A= 11 B=6

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

    • @yoops66
      @yoops66 2 ปีที่แล้ว

      Unless that 32=2^5 :-p
      That's how bugs in programs happen. ;-)

  • @anikbera8675
    @anikbera8675 2 ปีที่แล้ว +10

    Sir you could also have gone in this approach by using factors of 2016
    2016=2^5×(63)
    So dividing both sides by 2^5 we get,
    (2^a-2^b)/2^5=63
    2^(a-5)-2^(b-5)=63
    Nearest multiple of 2 near to 63 is 64 or 2^6 -1 and 1 can be written as 2^0=1
    So the equation becomes
    2^{a-5}-2{b-5}=2^6-2^0
    Comparing we get
    a-5=6 or a=11
    And b-5=0 or b=5

    • @joshuakym
      @joshuakym 2 ปีที่แล้ว +2

      Great, this is what I was getting ready to nsuggest.

    • @joshuakym
      @joshuakym 2 ปีที่แล้ว +1

      I mean suggest

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome, Anik. Keep it up 😀

    • @radhikar6690
      @radhikar6690 2 ปีที่แล้ว

      Hi Sir,
      x^m- x^n= x^n and n=m-1
      X=?

    • @generalmanageradminstratio4620
      @generalmanageradminstratio4620 2 ปีที่แล้ว

      For junior high school students and or their parents interested for the their children in learning advanced mathematics in junior classes, may watch :Olympiad Primer:th-cam.com/video/N6DOwMtq2Cc/w-d-xo.html

  • @AimzIIT
    @AimzIIT 2 ปีที่แล้ว +2

    Watching your videos on regular basis made me solve even tough problems 💝😃

    • @PreMath
      @PreMath  2 ปีที่แล้ว +2

      Glad to hear that
      Thank you for your feedback! Cheers!
      You are awesome, Atharv. Keep it up 😀
      Love and prayers from the USA!

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

  • @ankurdwivedi4534
    @ankurdwivedi4534 2 ปีที่แล้ว

    Completed by another method mentally in 2 minutes by substracting 2016 from nearest 2 power series number 2048, which is 2^11, then equating both sides terms individually which gives 2^11- 2^5 = 2048 - 32 = 2016 , so by equating this gives a= 11, b= 5

  • @TheArizus
    @TheArizus ปีที่แล้ว +1

    There's a very pretty solution utilising the uniqueness of binary representation
    2^a = 2^b + 2016
    2016 in binary is 11111100000 so we get that
    2^a = 2^b + 2⁵ + 2⁶ + 2⁷ + 2⁸ + 2⁹ + 2¹⁰
    Now we note by unqiness of binary representation that b € {5,6,7,8,9,10}
    Now suppose that b>5
    Then the RHS = 2⁵ + k×2⁵ = (k+1)2⁵ where k is even so (k+1) is odd so the RHS contains at least 2 different powers of 2 which is again impossible by uniqueness of binary representation
    Hence b=5 and a=11

  • @omsincoconut
    @omsincoconut 2 ปีที่แล้ว

    a > b
    a = 12 then 2^a - 2^b is more than or equal to 2048 > 2016 (minimum at b = 11 < a = 12)
    a = 10 then 2^a - 2^b < 1024 < 2016
    Since a, b are positive integers, a = 11
    Substitute in the original equation to get b = 5

  • @monroeclewis1973
    @monroeclewis1973 2 ปีที่แล้ว +1

    So logical. Spock-like.
    Thanks

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      You're welcome!
      Thank you for your feedback! Cheers!
      You are awesome, Monroe. Keep it up 😀

  • @saradaranadewa5444
    @saradaranadewa5444 2 ปีที่แล้ว

    Awesome. What a trick. Respect you sir.

  • @l.w.paradis2108
    @l.w.paradis2108 ปีที่แล้ว +1

    Wow, similar to what I did, but more methodically rigorous. I got to:
    (2^b)[2^(a -- b) -- 1] = 2^5 × 3^2 × 7
    The rest is easy.
    I was thinking I got lucky, mostly. 😊

  • @steveocken
    @steveocken 2 ปีที่แล้ว

    At 4:29 you write Even*Odd = even*odd and then assert Even = even and Odd = odd. This does not follow.. For example 10*7 = 14*5. Your assertion requires stating that the even numbers are powers of 2.

  • @patnaikt
    @patnaikt 2 ปีที่แล้ว

    Excellent! Awesome!!

  • @fouadhammout651
    @fouadhammout651 2 ปีที่แล้ว

    Saraha ma3andich zhar la f tssahib la f zwaj walit tangoul tawahad maynawad tawahda Matahmal

  • @alster724
    @alster724 2 ปีที่แล้ว +1

    Nice technique on the (32)(63) factoring of 2016

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Great
      Thank you for your feedback! Cheers!
      You are awesome, Kevin. Keep it up 😀

  • @sanaaarish7707
    @sanaaarish7707 2 ปีที่แล้ว +1

    Thank you for sharing!

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome, Sana. Keep it up 😀

  • @RekhaSharma-eo7se
    @RekhaSharma-eo7se 2 ปีที่แล้ว +1

    You are awesome sir

  • @farshadfattahi
    @farshadfattahi 2 ปีที่แล้ว

    You are really awesome. Thanks a lot

  • @xor-bits
    @xor-bits 2 ปีที่แล้ว +4

    Hi, amazing video once again! I asked this in an earlier video's comment section but IDK if you noticed: I love these videos but could it be possible to make these with a dark background instead of the white?

    • @PreMath
      @PreMath  2 ปีที่แล้ว +4

      Thanks for the idea! I'll discuss with my technical team.
      Thanks for the visit
      Thank you for your feedback! Cheers!
      You are awesome, Eemeli. Keep it up 😀

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

  • @Leleka2310
    @Leleka2310 2 ปีที่แล้ว

    It's a brilliant, Sherlock !

  • @KAvi_YA666
    @KAvi_YA666 2 ปีที่แล้ว +1

    Thanks for video. Good luck sir!!!!!!!!
    Very nice!!!!!

    • @PreMath
      @PreMath  2 ปีที่แล้ว +2

      Thanks for the visit
      Thank you for your feedback! Cheers!
      You are awesome. Keep it up 😀

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

  • @AllanKobelansky
    @AllanKobelansky 2 ปีที่แล้ว +2

    Can you prove that these are the only values a,b satisfying the constraints?

    • @PreMath
      @PreMath  2 ปีที่แล้ว

      Thank you for your feedback! Cheers!
      You are awesome, Allan. Keep it up 😀

    • @AllanKobelansky
      @AllanKobelansky 2 ปีที่แล้ว

      I’d suggest there would be an infinite number of solutions since the constraints that a > b and a=b+k are too loose to produce a single solution.
      It looks like a variation, but a close relative of, the “Catalan conjecture”.

    • @AllanKobelansky
      @AllanKobelansky 2 ปีที่แล้ว

      Yup. Here is the complete answer:
      2^a !=2016 and b = (log(2^a - 2016) + 2 i π n)/log(2) and n element Z
      Wolfram Alpha

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

  • @luigipirandello5919
    @luigipirandello5919 2 ปีที่แล้ว

    Excellent. Thank you.

  • @lei6513
    @lei6513 2 ปีที่แล้ว

    I also used your method, ty!

  • @johnbrennan3372
    @johnbrennan3372 2 ปีที่แล้ว +1

    Very nice solution. Excellent presentation.

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome, John. Keep it up 😀

  • @242math
    @242math 2 ปีที่แล้ว +1

    love the question bro, you explained the solution very well, great job

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome, my dear friend. Keep it up 😀

  • @slmarqol
    @slmarqol 2 ปีที่แล้ว

    Very good!!!

  • @mrmathcambodia2451
    @mrmathcambodia2451 2 ปีที่แล้ว

    ok , I understand and I try to know and learn more .

  • @mayanksahu2381
    @mayanksahu2381 2 ปีที่แล้ว +1

    let me tell you my method of approaching first taking a greater than b if we not take then value will be negative so we have taken that then taking common 2^b (2^a-b -1 )= 2^5multiply 63 and now by equatin first with first term and 2 with 2 we et our ans.easy question

    • @radhikar6690
      @radhikar6690 2 ปีที่แล้ว

      Hi Sir,
      x^m- x^n= x^n and n=m-1
      X=?

    • @mayanksahu2381
      @mayanksahu2381 2 ปีที่แล้ว +1

      @@radhikar6690 x will be 2 i think let me know or i will solve with another method

    • @mayanksahu2381
      @mayanksahu2381 2 ปีที่แล้ว

      @@radhikar6690 why you say me sir 🤣🤣i am a idiot student in my class i just use my aptitude of class7 to solve this question

    • @mayanksahu2381
      @mayanksahu2381 2 ปีที่แล้ว

      @@radhikar6690 tell me

  • @BangOlafson
    @BangOlafson 2 ปีที่แล้ว

    2048-32 popped into my head instantly. 2^5=32 I could figure out in my head. For 2^11=2048 I needed all my fingers… and one toe :)

  • @jimmyfreeman1571
    @jimmyfreeman1571 2 ปีที่แล้ว

    2016=0x7e0=0b 111,1110,0000. The right most 1 is index 5 (right most bit, or least significant bit, is index 0). Then b=5. The left most 1 is index 10, thus a = 10+1= 11.

  • @HappyFamilyOnline
    @HappyFamilyOnline 2 ปีที่แล้ว +1

    Another awesome video👍
    Thank you so much for your hard work💖💖

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome. Keep it up 😀

  • @omolayoeunice5106
    @omolayoeunice5106 2 ปีที่แล้ว

    Wow! Well done 👍🏻

  • @millemilliardsdedollars6914
    @millemilliardsdedollars6914 2 ปีที่แล้ว

    always great video !
    At 4:30 how do you proove unicity ?

  • @denisdaly1708
    @denisdaly1708 2 ปีที่แล้ว

    Lovely method.

  • @Hobbitangle
    @Hobbitangle 2 ปีที่แล้ว

    First we determine that a > b, so we can transform the left side of equation into
    2^b • (2^k-1)
    Next we note that expression 2^k is always even, and 2^k-1 is always odd.
    Then we must express right side of the equation into the product of the power of two by some number and some odd number. That can be done by subsequent dividing 2016 by two until the result is odd.
    So 2016 = 2^5 • 63
    where b = 5 and
    2^k-1 = 63
    2^k = 64 = 2^6
    k = 6
    a = b+k = 11
    Solved.

  • @johncampbell7868
    @johncampbell7868 2 ปีที่แล้ว

    You could just as conveniently said 2^a greater than 2016, hence try next power of 2 : 2^11 = 2048 and so 2^b = 32 > b = 5 solves the problem.
    Just another way of making a guess.
    Although, it is true that 2^b must be a divisor of 2016, since 2^b is a divisor of 2^a.

  • @ramanivenkata3161
    @ramanivenkata3161 2 ปีที่แล้ว +1

    Fantastic working.👍👍

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome, Ramani. Keep it up 😀

  • @gerald56
    @gerald56 2 ปีที่แล้ว

    if one observes that 2^11 = 2048 and 2^5 = 32 and subtract 32 from 2048 you'll can read the immediate answer for a=11 and b=5. Low level programers are familiar with the powers of 2.

  • @richardfredlund3802
    @richardfredlund3802 2 ปีที่แล้ว

    2016=32*9*7 so the only way it could be of the form 2^x(2^y-1) is if x=5 because 2^5=32 and the part inside the bracket is odd. 9*7=63 so if we add 1 then we get 64 which is 2^6. which means 2016 = 2^5 (2^6-1)= 2^11 - 2^5

  • @md.samiuullahlabib688
    @md.samiuullahlabib688 2 ปีที่แล้ว

    Can’t I factorize 2016 in other ways than 32*63? So the results can be different as long as a>b ?

  • @oliveripo4021
    @oliveripo4021 2 ปีที่แล้ว

    Hello. What note-taking app do u use?

  • @howareyou4400
    @howareyou4400 2 ปีที่แล้ว

    From the perspective of a software engineer, this problem is super easy no brainer...

  • @AnwarAnsari-le1bd
    @AnwarAnsari-le1bd 2 ปีที่แล้ว

    Excellent sir

  • @govindashit6524
    @govindashit6524 2 ปีที่แล้ว +2

    Superb! !!!

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

    • @PreMath
      @PreMath  2 ปีที่แล้ว +2


      Thank you for your feedback! Cheers!
      You are awesome, Govinda. Keep it up 😀

  • @zaimnadzmi7494
    @zaimnadzmi7494 2 ปีที่แล้ว +1

    Or :
    2^(b+k) + 2^b = 2016
    (2^b)(2^k) + 2^b = 2^11 + 2^5
    b+k = 11 , while b = 5
    Then ,
    5+k = 11
    k = 6
    Therefore :
    k = 6 and b = 5

  • @mainakkoley8691
    @mainakkoley8691 2 ปีที่แล้ว

    Sir can you prove the following equation in the next video?
    (1-x)-½=1+1/2x+3/8x²+5/16x³ ............................................................

  • @nirupamasingh2948
    @nirupamasingh2948 2 ปีที่แล้ว +2

    Vvvvv nice explanation

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      So nice of you
      Glad you enjoyed it!
      Thank you for your feedback! Cheers!
      You are awesome, Niru. Keep it up 😀

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

  • @katiatzo
    @katiatzo 2 ปีที่แล้ว +1

    Hi! excellent work! What about a=10 and b=3?

    • @mathfreak5702
      @mathfreak5702 2 ปีที่แล้ว +1

      That's not possible.
      That would be less than 2016

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

  • @MoonlitKnight12
    @MoonlitKnight12 2 ปีที่แล้ว

    I solved this problem by adding 2^5 to both sides.
    2^a - 2^b + 2^5 = 2016 + 2^5 = 2016 + 32 = 2048 = 2^11
    So 2^a - 2^b = 2^11 - 2^5
    So a=11 b=5 by comparison

  • @noobmaster4287
    @noobmaster4287 2 ปีที่แล้ว

    I did it like this,
    I converted 2016 into its exponential factors i.e. 2¹¹-2⁵ and then just compared these values with 2^a - 2^b. so I compared the negative term with the negative and the positive one with the positive and my answers were a=11 and b=5.
    don't judge me pls, I'm just in 10th standard so I solved it with what I know till now

  • @remkomulder5652
    @remkomulder5652 2 ปีที่แล้ว +3

    That is indeed an answer. But is it also proof that it is the only answer?

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome, Remko. Keep it up 😀

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

    • @PeterLE2
      @PeterLE2 2 ปีที่แล้ว +2

      Since you have only one equation and 2 variables there should be an unlimited number of solutions.
      But you also know that a and b are natural positive numbers. So you can show that the difference between a and b is the lowest when a=b+1. and thus you won't find another solution/differences that match since 2^12-2^11=2048 and 2^10=1024.
      2^a has to be =2^11

    • @remkomulder5652
      @remkomulder5652 2 ปีที่แล้ว +1

      @@PeterLE2 Exactly! My point was that the given proof is not complete. If you add your explanation, it is.

  • @nicogehren6566
    @nicogehren6566 2 ปีที่แล้ว +1

    nice solution

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome, Nico. Keep it up 😀

  • @davidfromstow
    @davidfromstow 2 ปีที่แล้ว +1

    I'm running out of superlatives to describe your questions and solutions!

    • @PreMath
      @PreMath  2 ปีที่แล้ว +2

      You are too generous, my dear friend.
      Thank you for your wonderful feedback! Cheers!
      You are awesome, David. Keep it up 😀

  • @himanshusharma2387
    @himanshusharma2387 2 ปีที่แล้ว

    Sir you are amazing

  • @minhhua6
    @minhhua6 2 ปีที่แล้ว

    so cool ❤❤

  • @monsterob3748
    @monsterob3748 2 ปีที่แล้ว

    THANK U ❤❤

  • @manoranjansarker8509
    @manoranjansarker8509 2 ปีที่แล้ว +1

    amazing video
    from bangladesh 🇧🇩🇧🇩🇧🇩🇧🇩

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      So nice of you
      Glad you enjoyed it!
      Thank you for your feedback! Cheers!
      You are awesome, Sarker. Keep it up 😀
      Love and prayers from the USA!

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

  • @billcame6991
    @billcame6991 2 ปีที่แล้ว +1

    Since 2ᵃ must be a power of 2, I the first power of 2 greater than 2016. That is 2048 (2¹¹). 2ᵇ must also be a power of 2 that can be subtracted from 2048 to produce 2016. 2048 - 2016 = 32. 32 is 2⁵. Therefore a is 11 and b is 5.

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thank you for your feedback! Cheers!
      You are awesome, Bill. Keep it up 😀

    • @radhikar6690
      @radhikar6690 2 ปีที่แล้ว

      Hi Sir,
      x^m- x^n= x^n and n=m-1
      X=?

  • @anilbabupa
    @anilbabupa 2 ปีที่แล้ว

    My Procedure was different
    Consider next higher exponential values of 2, That is(2048), Considered it (2048) as 2^a
    Calculated difference of 2016 and 2048 (32), that is considered as 2^b
    It implied a=11
    b=5

  • @prakashrout9079
    @prakashrout9079 2 ปีที่แล้ว

    Sir can you solve for x in 2^x=5

  • @prabhagupta6871
    @prabhagupta6871 2 ปีที่แล้ว +1

    I just splitted 2016 into 2048-32 and then 2¹¹-2⁵

  • @entity5678
    @entity5678 2 ปีที่แล้ว

    Nice one

  • @j.r.1210
    @j.r.1210 2 ปีที่แล้ว +1

    While I respect the manipulation used here, the fact is that the solution was really guessed rather than calculated. The reason for selecting 2^5 as a factor in the first place was that it was obvious that 5 was one of the anwers. I just guessed the answers directly, by "inspection" of the original equation, without any manipulation. I think that was simpler. But it's disappointing that there apparently is no method of calculating the solutions -- you just have to recognize them at some point, either with or without manipulation.

    • @PreMath
      @PreMath  2 ปีที่แล้ว

      Dear JR, these are Olympiad questions! These questions are designed to check your manipulation techniques and confidence. I agree with you about the choice of numbers. Thank you for your feedback! Cheers!
      You are awesome. Keep it up 😀

  • @rogeriocezarsilva1900
    @rogeriocezarsilva1900 2 ปีที่แล้ว

    Muito bom!!!

  • @Kkshatriya
    @Kkshatriya 2 ปีที่แล้ว

    Love from INDIA.

  • @mengpheapMEF
    @mengpheapMEF 2 ปีที่แล้ว

    Thanks

  • @GustavoGarabetti
    @GustavoGarabetti 2 ปีที่แล้ว

    2^a - 2^b = 2016
    Seja a > b, tem-se que:
    2⁵.(2^(a - 5) - 2^(b - 5)) = 2⁵.63
    2^(a - 5) - 2^(b - 5) = 63
    logo, o segundo termo há de ser ímpar e como é uma potência de base 2, então 2^(b - 5) = 1 => b - 5 = 0 => b = 5.
    E, consequentemente, 2^(a - 5) - 1 = 63 => 2^(a - 5) = 64 = 2⁶ => a - 5 = 6 => a = 11
    (11, 5) é a única solução natural.

  • @podcastforcreators
    @podcastforcreators 2 ปีที่แล้ว

    We can write 216 as 2^11-2^5
    And can compare a with 11 and b with 5..

  • @devondevon4366
    @devondevon4366 2 ปีที่แล้ว +1

    answer a=11 , b=5
    2^a =2016 + 2^b hence 2^a is greater than 2016 , if assume 'a' and 'b' are integers then
    2^a is at least 2048 or 2^11 , let assume it is 2^11 then 2^b = 2048-2016= 32 or 2^5. Since assume 'a' and 'b'
    are integers 'a'=11 and 'b'=5

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Super
      Thank you for your feedback! Cheers!
      You are awesome, Devon. Keep it up 😀

  • @SuperYoonHo
    @SuperYoonHo 2 ปีที่แล้ว +1

    thank you sir 😁

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      You're welcome!
      Thank you for your feedback! Cheers!
      You are awesome, Lee. Keep it up 😀

    • @SuperYoonHo
      @SuperYoonHo 2 ปีที่แล้ว

      please call me yoonho

    • @PreMath
      @PreMath  2 ปีที่แล้ว

      @@SuperYoonHo Thanks Yoonho. I believe it's South Korean... You are the best 😀

    • @SuperYoonHo
      @SuperYoonHo 2 ปีที่แล้ว

      @@PreMath you too i am south korean 이호석 is my father's name

    • @SuperYoonHo
      @SuperYoonHo 2 ปีที่แล้ว

      i'm 이윤호

  • @0VexRoblox
    @0VexRoblox 2 ปีที่แล้ว

    I knew 2^11 was 2048.
    I subtracted 2016 from 2048. Bingo! The answer was 32 which can be expressed as 2^5
    Now I wrote the problem as 2^a - 2^b = 2^11 - 2^5
    So upon inspection I got a = 11 and b = 5

  • @arunsanghvi6139
    @arunsanghvi6139 2 ปีที่แล้ว

    Observations:
    1. 2^a must end with 8 and 2^b must end with 2
    2. The positive powers of two - 2, 4, 8, 16, 32, 64, 128, 256... follows repeating pattern
    in their ending digit: 2, 4, 8, 6, 2, 4, 8, 6,
    3. Last digit 8 begins the pattern h 2^3, 2,^7, 2^11
    4. 2^11 = 2048 is close to required answer 2016
    5. 2048-2016 =32 , hence b =5 and a^11

  • @mahalakshmiganapathy6455
    @mahalakshmiganapathy6455 2 ปีที่แล้ว +1

    Thank you

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      You're welcome!
      Thank you for your feedback! Cheers!
      You are awesome, Mahalakshmi. Keep it up 😀
      Love and prayers from the USA!

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

  • @arminuploadsstuffonyt
    @arminuploadsstuffonyt 2 ปีที่แล้ว

    Okay but how do ya know that you gotta have 32 × 63 over there ? Like it could be anything else
    How do I find out that those two are the ones I need ?

  • @ravivarmaalluri9794
    @ravivarmaalluri9794 2 ปีที่แล้ว

    I think it can be done in a much more easier way.
    Look for a 2 power that is larger than 2048.
    2^11 = 2048
    2016 = 2048 - 32
    2048 - 32 = 2^11 - 2^5
    2^a-2^b = 2^11-2^5
    a=11, b=5

    • @yoops66
      @yoops66 2 ปีที่แล้ว

      Work in IT? :o)

  • @Bl-lb6ku
    @Bl-lb6ku 2 ปีที่แล้ว +2

    When I saw the question, the first move I made was 2048-32=2016, from here I understood that a=11 and b=5

    • @PreMath
      @PreMath  2 ปีที่แล้ว +1

      Thanks for the visit
      Thank you for your feedback! Cheers!
      You are awesome. Keep it up 😀

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html

    • @radhikar6690
      @radhikar6690 2 ปีที่แล้ว

      Hi Sir,
      x^m- x^n= x^n and n=m-1
      X=?

  • @gheorgheioan95
    @gheorgheioan95 2 ปีที่แล้ว

    How is this olympiad problem? For which class/ grade? It would be nice if you would have solve it in general case 2^a+2^b=c. Choosing right side as 2016 was like cheating . It solved the exercise by itself

  • @srividhyamoorthy761
    @srividhyamoorthy761 2 ปีที่แล้ว

    Sir , can we use logs as well?

    • @PreMath
      @PreMath  2 ปีที่แล้ว

      Many approaches possible!

    • @srividhyamoorthy761
      @srividhyamoorthy761 2 ปีที่แล้ว

      @@PreMath thanks for the reply, when I saw thi s at first logs seemed as first option because we have same bases in lhs

    • @cobokobo2115
      @cobokobo2115 2 ปีที่แล้ว

      amazing ...th-cam.com/video/4v5sqzhaAlI/w-d-xo.html