ขนาดวิดีโอ: 1280 X 720853 X 480640 X 360
แสดงแผงควบคุมโปรแกรมเล่น
เล่นอัตโนมัติ
เล่นใหม่
あまり難しいこと考えなくても解けますよね。4^5.42^4.これでイイじゃん😊✌️
これ本番で解けました!!一年間マスラボ見てたおかげで数学得意になれました!!まじでありがとうございました😊😊
やってみ見ました。(解)底の変換を行うと、与式 ⇔ 10.8 < log_2(2022) < 11 ⇔ 2^10.8 < 2022 < 2^11であると分かる。なお、2022 < 2^11 = 2048は明らかであるから、後は2^10.8 < 2022 ⇔ 2^0.8 < 2022/1024…①を示せばよい。さらに、1.974 1.97^5 = 1.97(1.97^2)^2 = 1.97{(2 - 0.03)^2 }^2 > 1.97 (4 - 0.12)^2 = 1.97*3.88^2 = 1.97(4 - 0.12)^2 > 1.97*(16 - 0.96) = 1.97*15.04 > 1.97*15 = (2 - 0.03)*15 = 30 - 0.45 = 29.55 > 16…③以上、②, ③より題意と同値な①が示された。(感想)京大合格を狙うなら落としてはダメな問題ですね。この問題の本質は、いかに評価方法を工夫して素早くミスなく終わらせて、他の問題に時間を残すといったところでしょうか。
京大工学部合格ありがとうすばるさん
因に自分の数学パワーに対応した挑戦は数式一切(つまり1+1、x+3yでも)禁止の超厳しい縛りから解けなのです私はちゃんとユークリッド原論に読破だから!!
これ解けたので数学4完1半でした。マジで本番で閃いた
理系?
@@sak257 文系です
@@handle_sleep まじか俺も文系。同じ4完半だったけど積分計算ミスっちゃったからほんと惜しい
半ってどこですか?第2問?
@@TV-hr6cz 私は第二問が半分です。
よく分かった。
備忘録‘’60G【 別解 】 0.301< log 2
素晴らしい解法やな
素晴らしい解法ですね。logと不等式評価の神髄のような
かしこいな…
スッキリしていて、あくまでも個人的な意見ですが、自分はこの解法の方が好みかもしれません!
簡単そうやけどこうゆうのが1番苦手京大数学なのに周りと差をつけれない+計算ミスって沼ると差をつけられる
絶対取り上げられる問題だと思ってました。不等式で範囲を示すのは、今回のように対数であったり、円周率の時のように図形に絡めたり、いろいろな知識を問えるので良問になりやすいのかなぁって思ってます!
1年間ありがとございましたこのチャンネルのおかげで、この度現役で慶應経済Aに合格できました新高3生も今から勉強時間を出来るだけ確保して頑張ってください数学は特に本番と自習での時に力が反映しづらい教科なので日頃から自分に厳しく計算ミスもバツをつけてどこがダメなのか分析するのが大切です長文失礼しやした
おめでとう㊗️
途中式の音煩わしい
結構音うざい
北大は去年よりかなり難化してました(最近が簡単すぎていたかも💦)その中で大問3の指数対数からの積分は難しかったです 傾向変わってましたしあまり見る解法でなかったのでぜひ紹介してくれたらいいなと思いますっ!
場合分けえぐいし交点を微分するのもなかなか見ない計算だったから方針は立ちやすいけど完答難易度はかなり高いですね
4^0.1=2^0.2と1.1^5=1.61051から4^0.1>1.1がいえる4^5.4=4^5.5÷4^0.1<2048÷1.1<1900<2022から左の不等号も示された■で、常用対数すら使わずに解けちゃいますね
京大らしい問題ですき
勿論、右側簡単、左側大事挑戦状!!数学オタクなら括弧無視して対数禁で解こう!!
大小比較の問題ってあまり本質がどうこういう話じゃないと思う。単にきちんと勉強しましたか?という話かなと思いました。10^0.84
パスラボで昔阪大で類題扱ったと思うんですけど、それを見てたおかけで本番すぐ解法ひらめきました。他にも整数などたくさんお世話になりました。ありがとうございました!!
4^0.4=4^⅖16の5乗根か…(詰み)2022
ありとあらゆるところで見ますよね、この問題。(笑)この問題を見たときに最初にするべきことは「log世界で考える」のか「logを外した世界で考えるのか」の選択で、確かに問題文がlogで書いてあるのだから前者の方針を選択する人のほうが多いでしょう。でも私は「4^5.4<2022<4^5.5を示せ。ただし、10^0.3010<2<10^0.3011は使ってよい」と翻訳しろ、と自分の勘ピュータ(78年製アンティーク)がいってきたのでそれに従うことにしました。まだ解答は完成していません。結局は2022を如何にして近い値で評価していくかなので、ぱっと見2^4・5^3=2000と2^11=2048は使えそうです。追記:てか、対数を使うか真数を使うかはそれほど本質的じゃないんですよね。だって定義から同値ですから。私だって7の評価をしようとすれば、49を使うことは気づかなくても、70や700を使おうかなとは考えます。追記2:東工大弄りが秀逸で最高です!もっともっと弄ってください。僕は文系脳なので出身者にしては人間らしいパスワードにしてます。作成日の日付とか。(その日だけ危ない)
0.5 + 30000/6022 > 5.4 は、割り算しなくても示せます。0.5 + 30000/6022 = 0.4 + 30602.2/6022 > 0.4 + 30110/6022 = 0.4 + 5 = 5.4。
1年間ありがとうございました☺️
京大とかの旧帝受けてないんだけど、解いてみたいなと思って解いたんですけど、この問題だけは全く解答できなかった。条件式使うことを意識したらこれだけじゃ処理できなくて詰まっちゃったな。
1/2+3/2log2>5.4を同値変形して簡単な形にした方が、代入するより楽だと思います。
自分は4の0.4乗が、4の5乗分の2022より小さいことを示してやったら出来ました
まさか京大でlogの不等式評価が出るとは...整数問題に全振りしてたのに
京大ってlogの不等式評価頻出でしょ
@@yulieskigourrielcastillo35 他の分野と絡めずに純粋な不等式評価は中堅の国公立や私立でたくさん出てるのでノーマークだったんですよ
2000 < 2022 < 2048を評価して解きました。それほどむずかしい問題ではないように思います。
自分も問題見たとき、その評価が使えそうだと思いました。
これは簡単でしたね。サービス問題で、これを解いた後安心して他の問題に取り組んでくださいということでしょうか。
最悪2の冪乗を延々列挙すれば解ける…と頭の中で悪魔の囁きが聞こえました🤣
これはマスラボ見てれば絶対出来ますね
今年の京大簡単すぎて2完3半じゃアド取れないか…
ディスアドバンテージだろ。
英語の高得点願おう
ほかの問題が気になります!!
この問題本番でlog2の範囲一切使わず解きました実際全体的に簡単だったとはいえ4完1半できた(文系)ので満足です
この問題先月の駿台と同じ形式だったw
数学の授業で京大でこれ出たから解けって言われたーw3分で解けって言われたんだけど普通に無理w
2000と2048ではなく、2016と2025で挟みました!常用対数log2, log3, log5, log7の近似が必要となりますが、前者のようなガバガバ近似をする勇気はなかったですね(笑)
そんなガバガバですかね
@@まる-g9p5o そらそうですよ!上から押さえた1024(2048)に至っては、5.5ピッタリなんですよ?(笑)
4^5.5=2048
計算途中の音あまり好きじゃないです、、
本番でちゃんと解けた!
私は40代ですが、この問題を見て見て解いてから、何人かの動画の解法を見たら違うやり方だったので「うーん」となっていたのですが、MathLaboの解法が自分が解いた方法に1番近くて「考え方は間違ってなかった」と安心しました。(最後の5.4より大きいで出しきれず^_^;;)
本番理系4完半でした!
2000
まあ余計なことではあるけど、間違ったことではないからいいんちゃう?w
返信ありがとうございます~
余計だけど間違いではないから減点はあり得ないと思います。
メイン垢ほ毎日投稿いつ再開しますか?
文系レベルやね
おはようございますです。なんか京大ってこのテの問題好きだなぁとともかくバラしてみるlog_4{2022} = (log2 + log3 + log337)/2log2337は素数だしlog3もあるし(相互変換できるのはlog2とlog5くらいだし)log2が範囲で与えられてるってことは 挟み撃ちかな与式が成立するならば4^{5.4} < 2022 < 4^{5.5}2^{10.8} < 2022 < 2^{11}=2048右側の不等号は成立する①から左側に注目2^{10.8} = 2^10 × 2^{0.8} = 1024 × 2^{0.8}2^{0.8} < 2022/1024 であれば左側の不等号も成立……②検証0.8log2 < log2022 - 10log2 ?2022の近場でlog外せるものを適当に選んではさみうち検証0.8log2 < log2000 - 10log2 < log2022 - 10log20.8log2 < 3 + log2 - 10log2 < log2022 - 10log29.8log2 < 3最大側で9.8log2 ≒ 2.95078 < 3……③①と②③より5.4 < log_4{2022} < 5.5もう少しスマートな方法はないものかと(特に2022が半端だからと適当に2000を放り込んだあたりが何かすっきりしない~)そして動画視聴2^10 は有名ですね。ついでに2^16 = 655362^24 = 167772162^32 = 4294967296は即出てくる人多そうかなさすがに2^64 = 18446744073709551616は さくっと言える人の職種が限られそうだけど
あまり難しいこと考えなくても解けますよね。
4^5.42^4.
これでイイじゃん😊✌️
これ本番で解けました!!一年間マスラボ見てたおかげで数学得意になれました!!まじでありがとうございました😊😊
やってみ見ました。
(解)
底の変換を行うと、与式 ⇔ 10.8 < log_2(2022) < 11 ⇔ 2^10.8 < 2022 < 2^11であると分かる。
なお、2022 < 2^11 = 2048は明らかであるから、後は2^10.8 < 2022 ⇔ 2^0.8 < 2022/1024…①を示せばよい。
さらに、1.974 1.97^5 = 1.97(1.97^2)^2 = 1.97{(2 - 0.03)^2 }^2 > 1.97 (4 - 0.12)^2 = 1.97*3.88^2 = 1.97(4 - 0.12)^2 > 1.97*(16 - 0.96) = 1.97*15.04 > 1.97*15 = (2 - 0.03)*15 = 30 - 0.45 = 29.55 > 16…③
以上、②, ③より題意と同値な①が示された。
(感想)
京大合格を狙うなら落としてはダメな問題ですね。この問題の本質は、いかに評価方法を工夫して素早くミスなく終わらせて、他の問題に時間を残すといったところでしょうか。
京大工学部合格
ありがとうすばるさん
因に
自分の数学パワーに対応した挑戦は
数式一切(つまり1+1、x+3yでも)禁止の超厳しい縛りから解けなのです
私はちゃんとユークリッド原論に読破だから!!
これ解けたので数学4完1半でした。
マジで本番で閃いた
理系?
@@sak257 文系です
@@handle_sleep まじか俺も文系。同じ4完半だったけど積分計算ミスっちゃったからほんと惜しい
半ってどこですか?第2問?
@@TV-hr6cz 私は第二問が半分です。
よく分かった。
備忘録‘’60G【 別解 】
0.301< log 2
素晴らしい解法やな
素晴らしい解法ですね。
logと不等式評価の神髄のような
かしこいな…
スッキリしていて、あくまでも個人的な意見ですが、自分はこの解法の方が好みかもしれません!
簡単そうやけどこうゆうのが1番苦手
京大数学なのに周りと差をつけれない+計算ミスって沼ると差をつけられる
絶対取り上げられる問題だと思ってました。不等式で範囲を示すのは、今回のように対数であったり、円周率の時のように図形に絡めたり、いろいろな知識を問えるので良問になりやすいのかなぁって思ってます!
1年間ありがとございました
このチャンネルのおかげで、この度現役で慶應経済Aに合格できました
新高3生も今から勉強時間を出来るだけ確保して頑張ってください
数学は特に本番と自習での時に力が反映しづらい教科なので日頃から自分に厳しく計算ミスもバツをつけてどこがダメなのか分析するのが大切です
長文失礼しやした
おめでとう㊗️
途中式の音煩わしい
結構音うざい
北大は去年よりかなり難化してました
(最近が簡単すぎていたかも💦)その中で
大問3の指数対数からの積分は難しかったです 傾向変わってましたしあまり見る解法でなかったのでぜひ紹介してくれたらいいなと思いますっ!
場合分けえぐいし交点を微分するのもなかなか見ない計算だったから方針は立ちやすいけど完答難易度はかなり高いですね
4^0.1=2^0.2と1.1^5=1.61051から4^0.1>1.1がいえる
4^5.4=4^5.5÷4^0.1<2048÷1.1<1900<2022から左の不等号も示された■
で、常用対数すら使わずに解けちゃいますね
京大らしい問題ですき
勿論、右側簡単、左側大事
挑戦状!!
数学オタクなら括弧無視して対数禁で解こう!!
大小比較の問題ってあまり本質がどうこういう話じゃないと思う。
単にきちんと勉強しましたか?という話かなと思いました。
10^0.84
パスラボで昔阪大で類題扱ったと思うんですけど、それを見てたおかけで本番すぐ解法ひらめきました。他にも整数などたくさんお世話になりました。ありがとうございました!!
4^0.4=4^⅖
16の5乗根か…(詰み)
2022
ありとあらゆるところで見ますよね、この問題。(笑)
この問題を見たときに最初にするべきことは「log世界で考える」のか「logを外した世界で考えるのか」の選択で、確かに問題文がlogで書いてあるのだから前者の方針を選択する人のほうが多いでしょう。
でも私は「4^5.4<2022<4^5.5を示せ。ただし、10^0.3010<2<10^0.3011は使ってよい」
と翻訳しろ、と自分の勘ピュータ(78年製アンティーク)がいってきたのでそれに従うことにしました。
まだ解答は完成していません。
結局は2022を如何にして近い値で評価していくかなので、ぱっと見2^4・5^3=2000と2^11=2048は使えそうです。
追記:
てか、対数を使うか真数を使うかはそれほど本質的じゃないんですよね。だって定義から同値ですから。
私だって7の評価をしようとすれば、49を使うことは気づかなくても、70や700を使おうかなとは考えます。
追記2:
東工大弄りが秀逸で最高です!もっともっと弄ってください。僕は文系脳なので出身者にしては人間らしいパスワードにしてます。作成日の日付とか。(その日だけ危ない)
0.5 + 30000/6022 > 5.4 は、割り算しなくても示せます。
0.5 + 30000/6022 = 0.4 + 30602.2/6022 > 0.4 + 30110/6022 = 0.4 + 5 = 5.4。
1年間ありがとうございました☺️
京大とかの旧帝受けてないんだけど、解いてみたいなと思って解いたんですけど、
この問題だけは全く解答できなかった。
条件式使うことを意識したらこれだけじゃ処理できなくて詰まっちゃったな。
1/2+3/2log2>5.4を同値変形して簡単な形にした方が、代入するより楽だと思います。
自分は4の0.4乗が、4の5乗分の2022より小さいことを示してやったら出来ました
まさか京大でlogの不等式評価が出るとは...
整数問題に全振りしてたのに
京大ってlogの不等式評価頻出でしょ
@@yulieskigourrielcastillo35
他の分野と絡めずに純粋な不等式評価は中堅の国公立や私立でたくさん出てるのでノーマークだったんですよ
2000 < 2022 < 2048を評価して解きました。それほどむずかしい問題ではないように思います。
自分も問題見たとき、その評価が使えそうだと思いました。
これは簡単でしたね。サービス問題で、これを解いた後安心して他の問題に取り組んでくださいということでしょうか。
最悪2の冪乗を延々列挙すれば解ける…と頭の中で悪魔の囁きが聞こえました🤣
これはマスラボ見てれば絶対出来ますね
今年の京大簡単すぎて2完3半じゃアド取れないか…
ディスアドバンテージだろ。
英語の高得点願おう
ほかの問題が気になります!!
この問題本番でlog2の範囲一切使わず解きました
実際全体的に簡単だったとはいえ4完1半できた(文系)ので満足です
この問題先月の駿台と同じ形式だったw
数学の授業で京大でこれ出たから解けって言われたーw
3分で解けって言われたんだけど普通に無理w
2000と2048ではなく、2016と2025で挟みました!
常用対数log2, log3, log5, log7の近似が必要となりますが、前者のようなガバガバ近似をする勇気はなかったですね(笑)
そんなガバガバですかね
@@まる-g9p5o
そらそうですよ!
上から押さえた1024(2048)に至っては、5.5ピッタリなんですよ?(笑)
4^5.5=2048
計算途中の音あまり好きじゃないです、、
本番でちゃんと解けた!
私は40代ですが、この問題を見て見て解いてから、何人かの動画の解法を見たら違うやり方だったので「うーん」となっていたのですが、MathLaboの解法が自分が解いた方法に1番近くて「考え方は間違ってなかった」と安心しました。(最後の5.4より大きいで出しきれず^_^;;)
本番理系4完半でした!
2000
まあ余計なことではあるけど、間違ったことではないからいいんちゃう?w
返信ありがとうございます~
余計だけど間違いではないから減点はあり得ないと思います。
メイン垢ほ毎日投稿いつ再開しますか?
文系レベルやね
おはようございますです。
なんか京大ってこのテの問題好きだなぁと
ともかくバラしてみる
log_4{2022} = (log2 + log3 + log337)/2log2
337は素数だしlog3もあるし(相互変換できるのはlog2とlog5くらいだし)
log2が範囲で与えられてるってことは 挟み撃ちかな
与式が成立するならば
4^{5.4} < 2022 < 4^{5.5}
2^{10.8} < 2022 < 2^{11}=2048
右側の不等号は成立する①から左側に注目
2^{10.8} = 2^10 × 2^{0.8} = 1024 × 2^{0.8}
2^{0.8} < 2022/1024 であれば左側の不等号も成立……②
検証
0.8log2 < log2022 - 10log2 ?
2022の近場でlog外せるものを適当に選んではさみうち検証
0.8log2 < log2000 - 10log2 < log2022 - 10log2
0.8log2 < 3 + log2 - 10log2 < log2022 - 10log2
9.8log2 < 3
最大側で
9.8log2 ≒ 2.95078 < 3……③
①と②③より
5.4 < log_4{2022} < 5.5
もう少しスマートな方法はないものかと
(特に2022が半端だからと適当に2000を放り込んだあたりが何かすっきりしない~)
そして動画視聴
2^10 は有名ですね。ついでに
2^16 = 65536
2^24 = 16777216
2^32 = 4294967296
は即出てくる人多そうかな
さすがに
2^64 = 18446744073709551616
は さくっと言える人の職種が限られそうだけど