Proof of existence by I.V.T.

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ต.ค. 2024

ความคิดเห็น • 79

  • @oraculum_
    @oraculum_ 8 หลายเดือนก่อน +53

    You're one of those few people I would actually love to click every video of theirs and immediately give a like without a further thought

    • @clionekimura9604
      @clionekimura9604 2 หลายเดือนก่อน +3

      I feel you, that’s exactly what I just did!

  • @Necrozene
    @Necrozene หลายเดือนก่อน +2

    I immediately answered "yes". In my mind I saw the graphs of y = x, y = x^3, and saw there were differences above and below +3, and I did not know exactly where. So, inituitively, I used the IVT. Cheers!

  • @demongeminix
    @demongeminix ปีที่แล้ว +13

    Awesome demonstration of the use of the IVT.

  • @sinanmertulucay9427
    @sinanmertulucay9427 2 วันที่ผ่านมา +2

    I think it could also be proved like this:
    x = x^3 + 3
    x^3 - x + 3 = 0
    let P(x) = x^3 - x + 3
    Inspecting the coefficients: 1 ∈ R, -1 ∈ R and 3 ∈ R. Hence, P(x) is a real cubic polynomial.
    Therefore it either has:
    a. 3 real solutions (x - R1)(x - R2)(x - R3)
    b. 1 real and 2 complex solutions (x - c)(x - a - bi)(x - a + bi), a ∈ R and b ∈ R
    So, there exists at least one real x such that P(x) = 0.

  • @kragiharp
    @kragiharp 9 หลายเดือนก่อน +4

    Your videos are great, sir.
    I really appreciate them.
    Best wishes to you.

    • @PrimeNewtons
      @PrimeNewtons  9 หลายเดือนก่อน +1

      Glad you like them!

  • @markmajkowski9545
    @markmajkowski9545 9 หลายเดือนก่อน +7

    ??? By observation - Every cubic (odd polynomial as well) has at least one real solution. Plus there is a cubic “formula” despite its modern perceived complexity - especially when the x^2 term is 0 which was first solved before the generalized cubic.

    • @ramennoodle9918
      @ramennoodle9918 หลายเดือนก่อน

      well yeah i think this is for more general proofs of this type

  • @tcoren1
    @tcoren1 14 วันที่ผ่านมา +1

    You can also use the fundamental theorem of arithmatic, which is arguably more advanced but is a bit more generic and is more fundamental to the question.
    The idea is to prove every odd degree polynomial with real coefficients has a real root.
    Every n degree polynomial has exactly n roots, and can be decomposed as p(x)=a(x-x1)(x-x2)...(x-xn), with x1,x2,...xn the roots.
    Taking the complex conjugate should result in the same polynomial since it's real, so p(x)=a(x-x1*)(x-x2*)...(x-xn*)
    Equating the roots of the two versions of the polynomial shows that each coefficient is either real or comes in a pair with another coefficient such that each is the other's coefficient. Since it is impossible to arrange an odd number of numbers into pairs at least one of them must be real

  • @davidcawthorne7115
    @davidcawthorne7115 2 หลายเดือนก่อน +1

    It is real important to remember that the function has to be continuous for IVT to hold or at least continuous over the interval a b. And to always wear a cool hat when doing mathematics. 😊❤

  • @pk2712
    @pk2712 4 หลายเดือนก่อน

    Great demonstration of the use of the intermediate value theorem .

  • @magefreak9356
    @magefreak9356 7 หลายเดือนก่อน +3

    I think you could also say that:
    f(x) is continuous on all real numbers.
    As x approaches negative infinity, f(x) approaches negative infinity.
    As x approaches positive infinity, f(x) approaches positive infinity.
    I don't know if the intermediate value theorem would apply here as infinity and negative infinity isn't a number. This would also apply to all polynomials which have an odd number for the highest power of x.

    • @9adam4
      @9adam4 7 หลายเดือนก่อน

      I don't think you're technically allowed to do that. But what you can do is prove that f(-c) is negative and f(c) is positive, where c is any integer greater than the sum of the absolute values of the coefficients of the polynomial.

    • @magefreak9356
      @magefreak9356 7 หลายเดือนก่อน

      @@9adam4 why do you need the extra restriction of the coefficients?

    • @9adam4
      @9adam4 7 หลายเดือนก่อน

      @magefreak9356
      The coefficients will determine how far you need to go to assure you have applicable points. For instance, f(x) = x^3 - 1000x^2, you need to get past 1000 before f(-c) is negative.

    • @manpreetkhokhar5318
      @manpreetkhokhar5318 5 หลายเดือนก่อน +1

      As per asked question, x^3 + 3 = x; I.e x^3 - x + 3 = 0
      Let's define f(x) = x^3 - x + 3
      So, question now transforms to checking if f(x) = 0 has any real root. We can clearly examine that, f(-2) = -3 and f(-1) = 3. Since, 0 lies between -3 and 3, so, by IVT, there exists atleast one c between -2 and -1, such that f(c) = 0. This proves, that f has atleast one root.Hence, for some c between -2 and -1, c^3 - c + 3 = 0. Also, by further analyzing the limits at -inf and its increasing,decreasing nature, we can deduce that,it is the only root.

    • @Ignoranceisbliss-i2e
      @Ignoranceisbliss-i2e 2 หลายเดือนก่อน

      @@9adam4 yes you can because the graph is continuous and always increasing...

  • @rceretta
    @rceretta 6 หลายเดือนก่อน

    Beautiful dialect solution!!!! I simply love it!

  • @jan-willemreens9010
    @jan-willemreens9010 ปีที่แล้ว +12

    ... A good day to you Newton despite the bad weather, Didn't I tell you ... BLACKBOARD --> SIR. NEWTON

    • @PrimeNewtons
      @PrimeNewtons  ปีที่แล้ว +1

      😊😊😊😊 Thank you!

  • @jesusthroughmary
    @jesusthroughmary 3 หลายเดือนก่อน +7

    Every cubic function (in fact every polynomial of any odd degree) must have at least one real root because complex roots come in pairs

    • @okaro6595
      @okaro6595 2 หลายเดือนก่อน

      Or if one goes towards plus or minus infinity he x³ term dominates and the value also goes towards the same infinity.

    • @jesusthroughmary
      @jesusthroughmary 2 หลายเดือนก่อน

      @okaro6595 true, and therefore since it tends to both infinities it must pass through 0 on the way

    • @김민국-c9f
      @김민국-c9f 2 หลายเดือนก่อน

      If the coefficients of a polynomial are complex numbers, it doesn't need to have a real number root

    • @anilbera9499
      @anilbera9499 2 หลายเดือนก่อน

      @@김민국-c9f but they are not here..

  • @markgraham2312
    @markgraham2312 6 วันที่ผ่านมา

    Excellent!

  • @davidbrisbane7206
    @davidbrisbane7206 หลายเดือนก่อน

    x³ - x + 3 = 0 has one real root and two complex conjugate roots.
    In fact, Descartes' Rule of Signs tells us that one negative real root.

  • @Faroshkas
    @Faroshkas 9 หลายเดือนก่อน +2

    I love this channel

  • @JayTemple
    @JayTemple 8 หลายเดือนก่อน

    I used the Sign Rule (I think that's the name) to show that there is exactly one solution that's negative. As originally stated, the number the problem asks for is a solution of x = x^3 + 3, which works out to x^3 - x + 3 = 0. If x is a solution, let y = -x. Then -y^3 + y + 3 = 0. The polynomial has exactly one sign change, so it has exactly one positive zero, but if y is positive, then x, which is -y, is negative.
    ETA: Also, I find 10 and -10 to be easier to use than smaller numbers (other than 1). My test here would be (-10)^3 - (-10) + 3 = -1000 + 100 + 3

  • @abdikadirsalad1572
    @abdikadirsalad1572 ปีที่แล้ว +2

    Thanks sir . Please make a video on mid term and final exam reviews calculus 1

  • @davidbrisbane7206
    @davidbrisbane7206 3 หลายเดือนก่อน +1

    Cardano's cubic formula always find a real solution to a cubic equation, so at least one such c exists and we know f(c) = 0.

  • @tanjilsarker7678
    @tanjilsarker7678 ปีที่แล้ว +2

    Thanks for the help!!

  • @TheTrx3richie
    @TheTrx3richie 5 หลายเดือนก่อน

    Good demonstration!

  • @artandata
    @artandata 5 หลายเดือนก่อน +1

    I kept waiting for the numerical real value of the answer!

  • @sjn7220
    @sjn7220 6 หลายเดือนก่อน +1

    Is there a solution that doesn’t involve guessing?

  • @michaelbujaki2462
    @michaelbujaki2462 หลายเดือนก่อน +1

    The number turns out to be approximately -1.67169988165716.

  • @manitubergaming
    @manitubergaming ปีที่แล้ว +1

    U soooo intelligent

  • @tudorsafir2766
    @tudorsafir2766 ปีที่แล้ว +2

    Isn't that also called Bolzano's Theorem?

  • @moeberry8226
    @moeberry8226 6 หลายเดือนก่อน

    Good video brother but you haven’t shown that x^3-x+3 is continuous even though I know it’s a polynomial and it’s continuous on R. Taking the derivative would also be good to show. Because differentiability implies continuity.

    • @tcoren1
      @tcoren1 14 วันที่ผ่านมา

      That's circular logic.
      The proof for the derivative of a polynomial goes through proving it is continuous.
      It's like using L'hopital's rule to find the limit of sinx/x

  • @kennethgee2004
    @kennethgee2004 3 หลายเดือนก่อน

    well the question changed a little from the thumb nail to the question on the board. This one feels like a no, but it is the proof they want.

  • @denniskisule8131
    @denniskisule8131 8 วันที่ผ่านมา

    what about iteration?

  • @Ahmed-kg2gf
    @Ahmed-kg2gf 4 หลายเดือนก่อน

    The question is , "is x real" in order to solve that u need to get the notation for the equation and it is x³+3=x
    Reenraging the terms
    X³-x+3=0
    Any cubic polynomial with real coefficient must have at least one real solution so the answer is ye , no need to solve

  • @williamspostoronnim9845
    @williamspostoronnim9845 10 หลายเดือนก่อน

    I like Your English very much!

  • @NathanSibali
    @NathanSibali 11 หลายเดือนก่อน

    Wow

  • @yaronbracha4923
    @yaronbracha4923 4 หลายเดือนก่อน

    Who's Dad?

  • @physife
    @physife 9 วันที่ผ่านมา

    I just used -10 and 0, these are easy enough

  • @Dr_piFrog
    @Dr_piFrog 4 วันที่ผ่านมา

    Approximately: -1.67...

  • @BB-sc8ed
    @BB-sc8ed ปีที่แล้ว +1

    Thank you for saving my ass

  • @9adam4
    @9adam4 7 หลายเดือนก่อน +2

    It's about -1.6717

    • @senseof_outrage9390
      @senseof_outrage9390 7 หลายเดือนก่อน

      Can you post the exact format of the solution.
      Did you solve the problem yourself... 😅

    • @neevhingrajia3822
      @neevhingrajia3822 5 หลายเดือนก่อน

      Thats a transcendental number right? So how can the a transcendental number be 3 more than its own cube?

    • @9adam4
      @9adam4 5 หลายเดือนก่อน +1

      @neevhingrajia3822
      What leads you to believe it's a transcendental number? As you correctly point out, a transcendental number can't be the solution to an equation like this.

    • @neevhingrajia3822
      @neevhingrajia3822 5 หลายเดือนก่อน +1

      @@9adam4 so are you saying that -1.6717 cubed would be 3 less than -1.6717?

    • @9adam4
      @9adam4 5 หลายเดือนก่อน

      @neevhingrajia3822
      Yes I am. Put it into the calculator yourself.

  • @Harrykesh630
    @Harrykesh630 5 หลายเดือนก่อน

    Using Derivatives would have been a better approach 🤔

  • @ThompsonUpton-k7l
    @ThompsonUpton-k7l หลายเดือนก่อน

    Harris Kimberly Perez Anthony Clark Betty

  • @elreturner1227
    @elreturner1227 2 หลายเดือนก่อน

    I did x^3 -x =-3
    x(x^2 -1)=-3
    x((x+1)(x-1))=-3
    x=-3, x=-4, and x=-2 and not one is right

  • @Noor-kq9ho
    @Noor-kq9ho 10 หลายเดือนก่อน

    depressed cubics

  • @m.h.6470
    @m.h.6470 11 หลายเดือนก่อน +1

    Solution:
    is there a real solution to x = x³ + 3?
    x = x³ + 3 |-x³
    x - x³ = 3 |therefore x³ < x, which means that, as the result is an integer, x *has* to be negative!
    (x³ < x would also be possible, if 0 < x < 1, but then the result of x - x³ would not be an integer)
    Since x³ is growing very fast, x has to be quite small.
    testing left term assuming x = -1
    -1 - (-1)³ = -1 - (-1) = -1 + 1 = 0
    testing left term assuming x = -2
    -2 - (-2)³ = -2 - (-8) = -2 + 8 = 6
    Therefore there is a real solution of x between -1 and -2.

  • @holyshit922
    @holyshit922 ปีที่แล้ว +2

    It is not so difficult to calculate x
    Assume that x is sum of two unknowns,plug in into the equation
    use binomial expansion , rewrite as system of equations
    Transform this system of equations to Vieta formulas for quadratic
    Check if solution of quadratic satisfies system of equations before transformation

  • @johnconrardy8486
    @johnconrardy8486 3 หลายเดือนก่อน

    why don't you
    why don't you create a tee shirt with your famous saying

  • @sunil.shegaonkar1
    @sunil.shegaonkar1 9 หลายเดือนก่อน +1

    Nearest answer is - 1.672, it is still an approximate.
    Question remains: is there an exact solution ?
    Probably not in rational numbers, but may be an irrational one.
    Oh, That is why they are called irrational number.

  • @colina64
    @colina64 10 หลายเดือนก่อน +2

    nice as usual, please try to change your blackboard to a white one or improve the light system for better visualization of your videos, best regards👍

  • @AbouTaim-Lille
    @AbouTaim-Lille 5 หลายเดือนก่อน

    X=3x³ , and excluding the trivial solution X=0. We have 3x²= 1 so x=±1/√3

  • @Taric25
    @Taric25 8 หลายเดือนก่อน +2

    Why all this proof stuff? Just solve it. x≈-1.6717 or x≈0.83585 ± 1.0469 i. That's it.

    • @xyz9250
      @xyz9250 6 หลายเดือนก่อน +1

      Could you post how you solved it ?

  • @hridikkanjilal460
    @hridikkanjilal460 3 หลายเดือนก่อน

    All negative number is greater than it's cube

    • @sinexitoalmiedo
      @sinexitoalmiedo 2 หลายเดือนก่อน

      False because (-(1/2))^3=-1/8 but -1/8 is greater than -1/2

    • @hridikkanjilal460
      @hridikkanjilal460 2 หลายเดือนก่อน

      @@sinexitoalmiedo I forgot to add 'all negative ' non fractions of decimals are greater than their squres

    • @sinexitoalmiedo
      @sinexitoalmiedo 2 หลายเดือนก่อน

      @@hridikkanjilal460 what??

    • @hridikkanjilal460
      @hridikkanjilal460 2 หลายเดือนก่อน

      @@sinexitoalmiedo all negative number which are not fractions or decimals are greater than their cubes