Can you find area of the Green shaded square? | (Squares) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 พ.ย. 2024

ความคิดเห็น • 46

  • @GentlemanH
    @GentlemanH 18 วันที่ผ่านมา +3

    I enjoyed that one and managed to solve it first time. Thanks. 🙂

    • @PreMath
      @PreMath  18 วันที่ผ่านมา

      I'm glad you liked it! 👍
      Thanks for the feedback ❤️

  • @allanflippin2453
    @allanflippin2453 18 วันที่ผ่านมา +2

    I found an intuitive approach, but I'm not sure the steps are valid:
    1) Consider that BD cuts the larger square into two equal areas.
    2) Isosceles triangles DEF and BFG each occupy half the area of the AEFG square. So each half of the larger square is 198
    3) Isosceles triangles DHK and BML each occupy half the area of the green square
    4) Add a point to complete the square formed by KLC. Then it becomes obvious that the KLC triangle occupies 1/4 the area of the green square
    5) The green square = 198 / 2.25 or 88.

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 17 วันที่ผ่านมา

    Very nice and enjoyable
    Thanks Sir
    Thanks PreMath
    Good times
    ❤❤❤❤

  • @jamestalbott4499
    @jamestalbott4499 4 วันที่ผ่านมา

    Thank you!

  • @timmcguire2869
    @timmcguire2869 18 วันที่ผ่านมา +1

    The top left half of the square can easily be shown to be made of 4 congruent triangles. Two of those together equal 99, so 1/2 the area of the square is 2x99=198. The bottom right half of the square can easily be shown to be made of 9 congruent triangles, 4 of which make up the smaller green square. So 4/9 x 198 is 88. No Pythag needed :-)

  • @marioalb9726
    @marioalb9726 18 วันที่ผ่านมา +1

    A= ½d²=99cm² ---> d²=2A=198
    2d = 3s
    s² = 4/9 d² = 88cm² ( Solved √ )

  • @alexundre8745
    @alexundre8745 18 วันที่ผ่านมา

    Bom dia Mestre
    Obrigado por mais uma aula
    Grato

  • @MarcoPolo-xu9te
    @MarcoPolo-xu9te 18 วันที่ผ่านมา +1

    I used other way. If you draw the line GF to the line DK, you will find out that DK = (4/3) a; therefore, b = DK sqrt ; b^2 = (8/9) a^2 = (8/9) . (3sqrt 11)^2 = 88. Fortunately, the same result, just nearly no geometry.

  • @santiagoarosam430
    @santiagoarosam430 18 วันที่ผ่านมา

    F es punto medio de DB y es el centro del cuadrado ---> ABCD =4*99.
    Si LMHK =a ---> CBD =a +a/2 +a/2 +a/4 =9a/4---> ABCD =18a/4 =4*99 ---> a=8*99/9 =88 cm².
    Gracias y saludos.

  • @phungpham1725
    @phungpham1725 18 วันที่ผ่านมา

    1/ Connect CF. Because F is the midpoint of the diagonal DB -> CF perpendicular to DB-> C,F and A are collinear.
    -> the triangle CKL is a right isosceles
    -> CF=b+ b/2= 3/2 b=AF
    Because AF= asqrt2= sqrt 99x sqrt 2= sqrt 198
    -> 3b/2 = sqrt 198
    -> b=2/3 sqrt198
    Area of the green square=4/9 x 198= 88 sq units😅😅😅

  • @marcgriselhubert3915
    @marcgriselhubert3915 17 วันที่ผ่านมา

    Be c the side length of the big ABCD square. The side length of the blue square is c/2. Then DB = sqrt(2).c, and the side lenght is the green square is DB/3
    as DH = HM = MB (see right isosceles triangles DHK and DML), so the side length of gthe green square is (sqrt(2)/3).c
    The ratio (side length of the green square)/(side length of the blue square) is then (2.sqrt(2))/3), so the rartio of their areas is ((2.sqrt(2))/3)^2 = 8/9
    As the area of the blue square is 99, we conclude that the area of the green square is 99.(8/9) = 88.

  • @sorourhashemi3249
    @sorourhashemi3249 17 วันที่ผ่านมา

    thanks. So challenging.AG=9.95, .focus on ∆FGB, the side on front of angle 45° = √2/2 BF. So FB =14.11. DH=x, DB =2X-b. ∆LCK~BML, LC=y. And LK= √2y. So √2y/y=19.95-y/√2y. 3y^2-19.95y ====> y= 6.65. ===>b=6.65×√2=9.3765. b^=87.919

  • @gelbkehlchen
    @gelbkehlchen 6 วันที่ผ่านมา

    Solution:
    b = side of the black square = √(4*99) = 2*3*√11 = 6*√11,
    d = diagonal of the black square = √(b²+b²) = b*√2 = 6*√11*√2 = 6*√22.
    g = side of the green square = HM = ML = MB [because isosceles triangle MLB with angles 90°, 45° and 45°] = HK = DH [because isosceles triangle DKH with angles 90°, 45° and 45°] ⟹ g = 1/3*d = 1/3*6*√22 = 2*√22
    area 0f the green square = g² = 4*22 = 88[cm²]

  • @lukeheatley4148
    @lukeheatley4148 18 วันที่ผ่านมา

    i made it hard for myself by focusing on triangle KCL with side lengths (6.sqrt11 - sqrt2.b) and hypotenuse b.
    so b = sqrt2 . (6.sqrt11 - sqrt2.b)
    3b = 6.sqrt2.sqrt11
    b=2.sqrt2.sqrt11
    b² = 88

  • @nandisaand5287
    @nandisaand5287 18 วันที่ผ่านมา

    A²=99
    A=Sqrt(99)=3•Sqrt(11)
    Recognizing 🔺️ DHK is a special 45°-45°-90°🔺️, with sides B, B and B•Sqrt(2), DK=B•Sqrt(2).
    KC•Sqrt(2)=B
    KC=B/Sqrt(2)
    KC=B•Sqrt(2)/2
    DC=2•A=DK+KC
    2•3•Sqrt(11)=B•Sqrt(2)+B•Sqrt(2)/2
    6•Sqrt(11)=3/2•B•Sqrt(2)
    B•Sqrt(2)=4•Sqrt(11)
    B=4•Sqrt(11)/Sqrt(2)
    B=4•Sqrt(22)/2
    Area=B²
    =[4•Sqrt(22)/2]²
    =16•22/4
    =4•22
    =88
    Put a box around it.
    [88cm²]
    How exciting.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 17 วันที่ผ่านมา

    360°ABC/99=3.63ABC 1.2^3.1 (ABC ➖ 3ABC+2).

  • @cyruschang1904
    @cyruschang1904 17 วันที่ผ่านมา

    white square (99 cm^2) is 1/4 of the big square area
    green square is 4/18 (= 2/9) of the big square area
    green square = (2/9)(4)(99 cm^2) = 88 cm^2

  • @quigonkenny
    @quigonkenny 18 วันที่ผ่านมา

    Let the side lengths of the large square ABCD, the 99cm² square AGFE, and the green square HMLK be a, b, and s respectively.
    Square AGFE:
    A = b²
    99 = b²
    b = √99 = 3√11
    As BD is the diagonal of large square ABCD and GF = FE = 3√11, then F must be the center point of the ABCD. Therefore, AGFE has half the side length of ABCD, so a = 2b = 2(3√11) = 6√11.
    Draw diagonal MK. As side HM of green square HMLK is collinear with diagonal BD, then as ∠CBD = ∠KMH = 45°, MK and BC are parallel.
    As angle pairs ∠LMK and ∠MLB and ∠LBM and ∠MKL are alternate interior angles and thus congruent, and as ∠MKL = ∠LMK = 45°, then all four angles equal 45°. As ML is common, ∆KLM and ∆BML are thus congruent isosceles right triangles and MK = BL.
    Draw diagonal LH let P be the point where MK and LH intersect, and as both lines are diagonals of HMLK, then P is the central point of HMLK and the midpoint of both MK and LH.
    As all internal angles of PLCK are 90° and KP and PL are congruent and adjacent, then PLCK is a square.
    BC = BL + LC
    6√11 = (MK) + LC
    6√11 = MK + (KP)
    6√11 = MK + (MK/2) = 3MK/2
    MK = (2/3)6√11 = 4√11
    Green Triangle ∆KLM:
    KL² + LM² = MK²
    s² + s² = (4√11)²
    2s² = 176
    [ s² = 176/2 = 88 cm² ]

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 18 วันที่ผ่านมา

    First I like to prove that the vertex of the 99 sq cms square(2a*2a=4a^2) is at the mid point(F) of the diagonal.
    1)in triangle DEF
    Angle E= 90 degrees
    Any D =45 degrees
    Angle F= 45 degrees
    Hence DE= EF=2a
    Then DF=√(4a^2+ 4a^2)=a√8
    2) we have proved above that DE = EF
    Hence E is the mid point of AD
    EF II AB
    Hence F is the mid point of BD.
    3) in (1) we have proved DF= a√8
    Hence BD = 2*DF=a 2√8
    4) triangle DHK
    Ang H= 90 degrees
    Ang D = 45 degrees
    Hence ang K = 45 degrees
    Hence DH =HK = b--(1)
    5) in triangle BML
    Ang M= 90 degrees
    Ang B =45 degrees
    Hence any L=45 degrees
    Hence BM =ML = b-- (2
    )
    6) from (1) & (2)
    We may say BD =3b=a 2√8
    b=a2√8/3
    b^2=(a^2*4)*8/9=4a^ 2*8/9=99*8/9=88 sq cms
    Comment please

  • @tedn6855
    @tedn6855 18 วันที่ผ่านมา

    I did it a bit easier you can see all the angles are 45 therefore the diagnol is made up of 3 equal parts. So find the diagonol and divide by 3 then square. We know the top square has sides sqrt99 therefore sqrt 2 of that is that diagonol making it sqrt 198. Double that is sqrt 792. Now divide by 3 and get sqrt 88. Making the square 88.

  • @onix460
    @onix460 18 วันที่ผ่านมา

    a = sqrt(99); DE=sqrt(99); DF=sqrt(a²+DE²) = sqrt(198)
    DB=2sqrt(198); DH=HM=MB => HM= 2sqrt(198)/3
    HM²(square HMLK) = 4*198/9 = 4*22 = 88cm²
    That's all

  • @ludosmets2018
    @ludosmets2018 18 วันที่ผ่านมา

    Draw perpendicular from F to DK, intersecting side b in point M. The small triangle FHM is isosceles (because angle FHM = 90° and angle HFM = 45°). FH = b/2 (because F is midpoint). DF= sqrt 198 (Pyth). Triangle DHK is also isoceles (because angle DHK = 90° and angle HDK = 45°). So, DH = HK or sqrt 198 - b/2 = b or 2 sqrt 198 - b = 2b or 2 sqrt 198 = 3b. So b= (2 sqrt 198) /3 and b^2= 88.

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 18 วันที่ผ่านมา

      FH=b/2 ( ?)
      It is neither a given condition nor it has been proved .

    • @ludosmets2018
      @ludosmets2018 17 วันที่ผ่านมา

      @@PrithwirajSen-nj6qq It is easy to prove that triangle EDF = triangle BFG and that triangle DHK = triangle BML and that consequently F is the midpoint of BD and of the side b.

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq 17 วันที่ผ่านมา +1

      @@ludosmets2018 Thanks a lot for the clear discussion u offered.

  • @AmirgabYT2185
    @AmirgabYT2185 17 วันที่ผ่านมา +1

    S=88 cm²

  • @Birol731
    @Birol731 18 วันที่ผ่านมา

    My way of solution ▶
    The triangles ΔFBG and ΔDFE are congruent isosceles right triangles, and the triangles ΔMLB and ΔDKH are also congruent isosceles right triangles, so:
    [HK]= [KL]=[LM] =[MH]= x
    [MB]= [ML]= x
    [DH]=[HK]= x
    [HM]= x

    [DB]= x+x+x
    [DB]= 3x
    [FG]= [GB]

    [AB]= 2[AG]
    II) A(EFGA)= 99 cm²
    a= √99
    a= 3√11 unit lengths

    [AB]= 6√11
    [DB]= √2*[AB]
    [DB]= √2*6√11
    [DB]= 6√22
    III) [DB]= 3x
    3x= 6√22
    x= 2√22

    x²= 2²*22
    x²= 88
    Agreen= 88 square units ✅

  • @MrPaulc222
    @MrPaulc222 18 วันที่ผ่านมา

    This proved trickier than I first tbhought.
    I went wrong initially because I over complicated it by using irrationals instead of variables too early.
    But I got there in the end.

  • @himo3485
    @himo3485 18 วันที่ผ่านมา

    99*2=198 Green Square area = 198*4/9 = 88cm²

  • @rey-dq3nx
    @rey-dq3nx 18 วันที่ผ่านมา

    AF=FC
    3√ 22=3x/2
    x=2√22
    x²=88

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 18 วันที่ผ่านมา

    STEEP-BY-STEP RESOLUTION PROPOSAL :
    01) If Square [AEFG] = 99 sq cm ; Then : AE = AG = EF = FG = 3sqrt(11) cm
    02) Square [ABCD] = (4 * 99) sq cm = 396 sq cm. Sides : AB = AD = CD = BC = sqrt(396) = 6sqrt(11) cm
    03) Square Diagonal = BD = Side * sqrt(2) ; BD = 6sqrt(11) * sqrt(2) ; BD = 6sqr(22) cm
    04) We can easy demonstrate by means of Algebra that : DH = HM = MB = X. I am not going to spare my time here in Routine Calculations.
    05) BD / 3 = 2sqrt(22) cm
    06) X = 2sqrt(22) cm
    07) X^2 = (4 * 22) sq cm ; X^2 = 88 sq cm
    OUR BEST ANSWER :
    Green Square Area equal 88 Square Centimeters.

  • @raffaeleguerrieri5482
    @raffaeleguerrieri5482 18 วันที่ผ่านมา

    Su che base AEFG è un quadrato?

  • @JSSTyger
    @JSSTyger 18 วันที่ผ่านมา

    8(99)/9 = 88

  • @dustinhigh9035
    @dustinhigh9035 18 วันที่ผ่านมา

    99

  • @wackojacko3962
    @wackojacko3962 18 วันที่ผ่านมา

    I've got the Halloween blues and am trapped in a parallel universe far, far away trying too convince myself that ghosts don't exist. The only way back is too keep studying the concepts of Euclid and figure out how to work the useless Set Square and navigate back home. Wish me luck! 🙂

    • @santiagoarosam430
      @santiagoarosam430 18 วันที่ผ่านมา +1

      Que los vientos te sean favorables y que cuando llegues a casa, Argos te reconozca.

  • @prossvay8744
    @prossvay8744 18 วันที่ผ่านมา

    Green area=88cm^2

  • @misterenter-iz7rz
    @misterenter-iz7rz 18 วันที่ผ่านมา

    79.2。99×(4/5)=79.2.😊

    • @Slimmo_09
      @Slimmo_09 15 วันที่ผ่านมา

      That's not like you to make such a mistake. Your fraction should be 4/4.5.

  • @wasimahmad-t6c
    @wasimahmad-t6c 18 วันที่ผ่านมา

    Saim 99

  • @wasimahmad-t6c
    @wasimahmad-t6c 18 วันที่ผ่านมา

    88 100% raite