Find the missing area | A Very Nice Geometry Problem

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 ก.พ. 2025
  • GET MY EBOOKS
    •••••••••••••••••••••••
    150 Challenging Puzzles with Solutions : payhip.com/b/y...
    Function : payhip.com/b/y...
    Sequence and Series : payhip.com/b/B...
    Differentiation : payhip.com/b/W...
    Indefinite Integration : payhip.com/b/8...
    Definite Integration + Area under the Curve : payhip.com/b/1...
    Trigonometry : payhip.com/b/8...
    OTHER CHAPTERS : COMING SOON.....
    --------------------------------------------------------------------------------
    Join the channel to become a member
    / @mathbooster

ความคิดเห็น • 29

  • @denisrenaldo3506
    @denisrenaldo3506 3 หลายเดือนก่อน +1

    To demonstrate that triangles OEF and OCD, you don’t need to use angles, you should simply use the fact that AB and CD are parallel (Thales Theorem).

    • @WahranRai
      @WahranRai 3 หลายเดือนก่อน +1

      May be he does not know the theorem of Thales as important as that of Pythagoras.
      He persists in not using it : elementary geometry without use fundamental theorems is incomplete
      I already made the remark to him about Thales' theorem.

  • @hongningsuen1348
    @hongningsuen1348 3 หลายเดือนก่อน +2

    [EOF] = 2 is a mistake.
    Method using area-side ratio property of equal height triangles and of trapezium divided into 4 triangles by its diagonals:
    1. Join ED and FC to form trapezium EFCD as AB//CD which are sides of rectangle ABCD.
    Area-side ratio property for the 4 regions of trapezium is top area: left area: right area:bottom area = top side^2:top side x bottom side:top side x bottom side:bottom side^2.
    As top area: bottom area = 1:4, sides EF:DC ratio is 1:2 and area of the left and right regions of trapezium = 1x2 = 2.
    2. Area of triangle DFC = bottom area + right area = 4 + 2 = 6
    3. Area of triangle AFD = 3 + 1 = 4 (given)
    4. Triangles DFC and AFD are equal height triangles with area ratio = base side ratio.
    Hence side ratio AF:DC = 4:6 Hence AF = DC x 4/6 = 2 x 4/6 = 4/3
    FB = AB - AF = DC - AF = 2 - 4/3 = 2/3
    5. Triangles FBC and AFD are equal height triangles with base side ratio 2/3:4/3.
    Hence area ratio of FBC:AFB = 1:2. Hence area of triangle FBC = 4/2 = 2.
    6. Area of BCOF = area of FBC + area of FOC (which is lateral area of trapezium = 2 from step 1) = 2 + 2 = 4.

  • @DB-lg5sq
    @DB-lg5sq 3 หลายเดือนก่อน +1

    شكرا لكم على المجهودات
    يمكن استعمال
    BC=l
    DC=L , FD=t
    X=lL - 8
    EF^2/L^2 =1/4
    FE=L/2
    X+1=1/2 l (t+L/2)
    X+4 =1/2 l (t+L)
    X+4 -(X+1) = 1/4 lL
    3 = 1/4 lL
    12 = lL
    X= lL-8
    X=4

  • @santiagogonzalez9797
    @santiagogonzalez9797 3 หลายเดือนก่อน +4

    A simple solution: DOC height its double of EOF height (because DOC area its 4 times EOF). So the height of ABCD square its 3/2 DOC height. And the base its the base of DOC. So, the area of ABCD its 12. Then the area of FOCB its just 12-(4+3+1)=4.

  • @zdrastvutye
    @zdrastvutye 2 หลายเดือนก่อน

    there was a mistake, which was visible because one line was crooked
    which should have been straight instead. so "xs2" must fulfill 2 equations as written in line 40:
    10 print "mathbooster-find the missing area, a very nice geometry problem"
    20 dim x(5,2),y(5,2):a1=1:a2=3:a3=4:lb=3:sw=sqr(a1+a2+a3)/183:goto 120
    30 xs3=2*(a1+a2)/lb:la=2*a3/ys2:xs2=ys2*xs3/lb
    40 d1=la/lb:d2=la/ys2:d3=xs2/ys2:xs1=lb*(d1-d2+d3)
    50 a4=lb*(la-xs1)/2:a4=a4-a1:xs2=ys2*xs3/lb
    60 dg=(a1+a2+a3+a4-la*lb)/la/lb:return
    70 ys2=sw:gosub 30
    80 dg1=dg:ys21=ys2:ys2=ys2+sw:if ys2>20*la then return
    90 ys22=ys2:gosub 30:if dg1*dg>0 then 80
    100 ys2=(ys22+ys21)/2:gosub 30:if dg1*dg>0 then ys21=ys2 else ys22=ys2
    110 if abs(dg)>1E-10 then 100 else return
    120 gosub 70:print "a4=";a4:gosub 130:goto 260
    130 x(0,0)=0:y(0,0)=0:x(0,1)=la:y(0,1)=0:x(0,2)=xs2:y(0,2)=ys2:x(1,0)=la:y(1,0)=0
    140 x(1,1)=la:y(1,1)=lb:x(1,2)=xs2:y(1,2)=ys2:x(2,0)=xs2:y(2,0)=ys2:x(2,1)=la:y(2,1)=lb
    150 x(2,2)=xs3:y(2,2)=lb:x(3,0)=xs2:y(3,0)=ys2:x(3,1)=xs3:y(3,1)=lb:x(3,2)=xs2:y(3,2)=lb
    160 x(4,0)=0:y(4,0)=lb:x(4,1)=xs2:y(4,1)=ys2:x(4,2)=xs1:y(4,2)=lb:x(5,0)=0:y(5,0)=0:x(5,1)=xs2
    170 y(5,1)=ys2:x(5,2)=0:y(5,2)=lb:masx=1200/la:masy=850/lb:if masx

  • @michaeldoerr5810
    @michaeldoerr5810 3 หลายเดือนก่อน

    The area is 12 units square. Also I have noticed regarding the theta and alpha criterion for the HL similarity, required the ratios of the two triangles-not drawn to scale-equaled the ratio of the triangle bases squared. I am wondering would that work without the rectangle??? I believe that this is similar to one of your videos that makes use of a similar criterion. I could be wrong.

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 3 หลายเดือนก่อน

    The triangles OEF and OCD are similar and their similarity ratio is √1/4=1/2, from which OD=2OF, so the area of triangle ODE is 2 and the area of triangle OFC=2, from which the area of triangle AED is 1, which means that EF=3AE, from which FB=2AE, so the area of triangle BFC=2, so the area of quadrilateral OFBC=the area of triangle OFC+the area of triangle FBC=2+2=4

  • @Antony_V
    @Antony_V 3 หลายเดือนก่อน +1

    Since DC is twice EF, area of rectangle ABCD is 12 and area of FBCO = 12-1-3-4 = 4 squ

    • @hongningsuen1348
      @hongningsuen1348 3 หลายเดือนก่อน

      Please explain how to get area of rectangle ABCD = 12.

    • @soli9mana-soli4953
      @soli9mana-soli4953 3 หลายเดือนก่อน +1

      @@hongningsuen1348I suppose this result follows by the similarity between Triangles OEF and DOC

    • @hongningsuen1348
      @hongningsuen1348 3 หลายเดือนก่อน

      @@soli9mana-soli4953 Thanks for your help. I finally get the explanation after studying other comments. Triangles OEF and DOC are similar with side ratio of 1:2 from their area ratio of 1:4. It means height of rectangle:height of triangle DOC is 3:2. Let the width and height of rectangle be b and h. We have area of triangle DOC = (1/2) b(2/3)h = 4 as given. Hence bh = 12.

    • @Antony_V
      @Antony_V 3 หลายเดือนก่อน

      @@hongningsuen1348 Sorry, I didn't see your comment. Here's my explanation:
      if CD is the base "b" of the rectangle, from similarity of triangles EOF and DOC we have EF = b/2. So the remain segments on AB, AE+FB = b/2 too. Let's draw triangles AOE and EOB: their areas add up to 1 (same height of EOF). Area of triangle AOB = 1+1 =2. This area added to COD area = 2+4 = 6. And that's half the area of the rectangle.

  • @himo3485
    @himo3485 3 หลายเดือนก่อน

    EOF∞COD 1 : 4 = 1² : 2² FO : OD = 1: 2
    EOD = 2 EDC = 2 + 4 = 6 ABCD = 6 * 2 = 12
    BCOF = 12 - (3 + 1 + 4) = 4

  • @santiagoarosam430
    @santiagoarosam430 3 หลายเดือนก่อน

    s²=1/4---> s=1/2---> Si bh/2=1---> 2b*2h/2=4bh/2=4---> (2b*3h/2)*2 =(6*bh/2)*2 = 12 = Área del rectángulo ---> BCOF =12-1-4-3 =4.
    Gracias y saludos

  • @aromaclinic4112
    @aromaclinic4112 19 วันที่ผ่านมา

    △EDO=2
    △FCO=2
    △ADE=1
    △EDF=3
    AE:EF=1:3
    EF:DC=1:2
    AE:EF:FB=1:3:2
    △FCB=2

  • @rooker56
    @rooker56 3 หลายเดือนก่อน +1

    EOF is 1 or 2? Please make it clear.

    • @MathBooster
      @MathBooster  3 หลายเดือนก่อน

      It is 1. Sorry for mistyping.

  • @aksiiska9470
    @aksiiska9470 3 หลายเดือนก่อน

    i would guess the missing area=3 because it looks symmetric

  • @marioalb9726
    @marioalb9726 3 หลายเดือนก่อน

    Similarity of triangles:
    b₁/b₂ = h₁/h₂ =√(A₁/A₂) = √(4/1) = 2
    b₁= 2.b₂
    Area of rectangle:
    A = b₁.h = b₁(h₁+h₂) = b₁.h₁+b₁.h₂
    A = b₁.h₁+2b₂.h₂ = 8+2*2 = 12 cm²
    Area of quadrilateral :
    A₄= A -A₁ -A₂ -A₃ = 12 -4 -1 -3
    A₄= 4 cm² ( Solved √ )

  • @oscarcastaneda5310
    @oscarcastaneda5310 3 หลายเดือนก่อน

    Something seems to be missing in my logic... Help : )
    Since EF = (1/2)L then AE = (1/4) L so AF = (3/4) L.
    4 = (1/2)(3/4 L) W so LW = 32/3 = 10 2/3.
    [BCOF] = 10 2/3 - 8 = 2 2/3.

  • @vasanthosangadi2896
    @vasanthosangadi2896 3 หลายเดือนก่อน

    3🙏🇮🇳🚩

  • @oscarcastaneda5310
    @oscarcastaneda5310 3 หลายเดือนก่อน

    Is [EOF] 2 or 1 ?

    • @MathBooster
      @MathBooster  3 หลายเดือนก่อน

      It is 1, sorry for mistyping.

  • @xz1891
    @xz1891 2 หลายเดือนก่อน

    Mental calculation in 30 sec, 4

  • @yakupbuyankara5903
    @yakupbuyankara5903 3 หลายเดือนก่อน

    4

  • @Ramkabharosa
    @Ramkabharosa 3 หลายเดือนก่อน +1

    Let MN be the vertical line through O, parallel to AD, that meets AB in M & CD in N.
    Now ΔCOD and ΔEOF are similar (since AB is parallel to CD). So |ON| = 2.|ON|,
    |CD| = 2.|EF| & (½).|OM|.|EF| = 1. ∴ Area (ABCD) = |AB|.|CD| = (|ON|+|OM|).(2.|EF|)
    = (3.|OM|).(2.|EF|) = 12.(½).(|OM|.|EF|) = 12. Thus Area(BCOF) = 12 - 4 - 3 - 1 = 4.

  • @marcelojabuti3619
    @marcelojabuti3619 2 หลายเดือนก่อน

    😂😂😂😂