Poland Math Olympiad | A Very Nice Geometry Problem

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ก.พ. 2025

ความคิดเห็น • 19

  • @jimlocke9320
    @jimlocke9320 วันที่ผ่านมา +3

    Solution by half interval search: At 2:20 in the video, a perpendicular has been dropped to PQ, dividing it into 2 equal length segments, PN and NQ, each length 3. Drop a perpendicular to BQ and label the intersection as point R. BQ has been divided into 2 equal length segments, BR and QR, each length 5. Construct OQ. ΔBOR and ΔQOR are congruent by side-angle-side. From congruency,

  • @marioalb9726
    @marioalb9726 วันที่ผ่านมา +4

    Pytagorean theorem, twice:
    R² - (6/2)² = 10² - (R - 6/2)²
    R² - 3² = 10² - (R² - 6R + 3²)
    2R² - 6R -10² = 0
    R² - 3R -50 = 0 ---> R = 8,7284 cm

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب วันที่ผ่านมา +4

    Let C be the point diagonally opposite to point B, and let H be the perpendicular projection of point Q onto BC, and let r be the radius of the semicircle. Since the trapezoid BQPC is isosceles because PQ is parallel to BC, then BH=CA=(2r-6)/2=r-3, and we have in the right triangle BQC BH*BC=BQ², and from it (r-3)*2r=100, so r²-3r-50=0 so r=(3+√209)/2 .

  • @oscarcastaneda5310
    @oscarcastaneda5310 วันที่ผ่านมา +2

    Nice One : )
    While using symmetry I set AP = "h" and solved h²= √(100 - h²)(6 + √(100 - h²). From this I was able to find h and then uncover that √(h² + 9) = (3 + √209)/2.

  • @matthieudutriaux
    @matthieudutriaux วันที่ผ่านมา +1

    2*arcsin(10/(2*x))+arcsin(6/(2*x))=Pi/2
    2*arcsin(5/x)+arcsin(3/x)=Pi/2
    2*arcsin(5/x)=Pi/2-arcsin(3/x)
    cos(2*arcsin(5/x))=cos(Pi/2-arcsin(3/x))
    1-2*(sin(arcsin(5/x)))^2=sin(arcsin(3/x))
    1-2*(5/x)^2=3/x
    1-2*25/x^2=3/x
    1-50/x^2=3/x
    x^2-3*x-50=0 (same equation than video at 8:12)
    answer : x=(3+sqrt(209))/2

  • @kateknowles8055
    @kateknowles8055 วันที่ผ่านมา +1

    Thank you for this problem and your well-presented solution.
    required radius = r
    3.3 = r . r - AP.AP because MO = AO where M is the midpoint of PQ, and O is the centre of the circle (of which we are given the top half.)
    and because PQ and the diameter which goes through M intersect at M.
    (r -3 )(r+3)= AP.AP gives no new information but looks at A as the intersection of AP and B'A OB, the diameter through A
    B'P is a mirror image of BP. In triangle B'PA PA.PA + B'A.B'A = B'P.B'P =10.10=100
    B'A.B'A = 100 - AP.AP =100+9 - r.r = 109 -r.r and r - 3 = B'A
    so 109 - r.r = r.r - 6 r +9 2r.r - 6r -100 =0 r.r - 3r - 50 =0 r = (1/2)(3 +/- sqrt (9 +200)
    r > 0 so the radius , r = ( sqrt (209) + 3 )/2

    • @oscarcastaneda5310
      @oscarcastaneda5310 วันที่ผ่านมา

      Your thinking is very creative. I enjoyed reading your logical steps : )

    • @kateknowles8055
      @kateknowles8055 วันที่ผ่านมา

      @@oscarcastaneda5310 : ) Thank you for telling me. I enjoy typing and thinking together.

  • @florianbuerzle2703
    @florianbuerzle2703 วันที่ผ่านมา +1

    Let C be the center of the semicircle diameter. Drop a perpendicular QD onto AB. As |CP| = |CQ| = r, the midpoint M of PQ is on a line CM parallel to AP and QD and therefore |AC| = |CD| = 3. Let E be the point on the left end of the diameter and consider triangle EBQ. EBQ is a right trinagle with height h = QD and we have |ED| = r + 3, |DB| = r - 3. So h² = (r - 3)(r + 3) = r² - 9. Considering right triangles EDQ and EBQ, we can finally establsih that (2r)² - 10² = (r + 3)² + r² - 9. This simplifies to the quadratic equation r² - 3r -50 = 0 with the only sensible solution r = (3 + √209) / 2 as the second solution is negative.

    • @oscarcastaneda5310
      @oscarcastaneda5310 วันที่ผ่านมา +1

      A very concise and logical explanation : )

  • @うっちゃん-e8e
    @うっちゃん-e8e วันที่ผ่านมา +2

    円の中心をO、QからABに垂線を引いて交点をDとしAB₌a、AP₌b、半径rとする。
    (a₋r)^2₊b^2₌r^2 a^2₊b^2₋2ar₊r^2₌r^2よりa^2₊b^2₌2ar ①
    (a₋6)^2₊b^2₌100 a^2₊b^2₋12ar₊36₌100よりa^2₊b^2₌64₊12ar ②
    ①、②より2ar₌64₊12ar ar₌32₊6ar a₌32/(r₋6)   ③
    円の左端の点をEとすると△BQE∽△BQDよりa₋6:10₌10:2r
    100₌2r(a₋6) a₌(6r₊50)/r    ④
    ③、④より(6r₊50)/r₌32/(r₋6) 6r^2₋36r₊50r₋300₌32r 6(r^2₋3r₋50)₌0
    r₌(3₊√209)/2

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho วันที่ผ่านมา

    Solution :
    Draw a Vertical Line passing by Point Q, parallel to AP. Call the the intercepting Point on Line AB, Point A'.
    Call the Center of the Semicircle C.
    AC = CA' = PQ / 2 = 3
    AP = h
    CQ = R(adius)
    h^2 = R^2 - 9
    h^2 = 100 - (R - 3)^2
    R^2 - 9 = 100 - R^2 + 6R - 9
    2R^2 = 100 + 6R
    2R^2 - 6R - 100 = 0
    R^2 - 3R - 50 = 0
    Positive Solution :
    R = (3 + sqrt(209)) / 2
    R ~ 8,7284

  • @nedmerrill5705
    @nedmerrill5705 วันที่ผ่านมา

    It's funny how a successful solutions of these problems depends on picking up the small facts. I missed the fact that OQ is a radius, and ended up with an unwieldy 4th order equation.

  • @Rudepropre
    @Rudepropre วันที่ผ่านมา +1

    2r/10= 10/(r-3).

  • @santiagoarosam430
    @santiagoarosam430 วันที่ผ่านมา

    PA²=r²-3²=10²-(r-3)²---> r=(3+√209)/2.
    Gracias y un saludo cordial.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 วันที่ผ่านมา

    (6)^2 (10)^2={36+100}=136ABPQ/90=1.46ABPQ 1.2^23 1.2^23^1 1.2^1^1 2^1 (ABPQ ➖ 2ABPQ+1).

  • @giuseppemalaguti435
    @giuseppemalaguti435 วันที่ผ่านมา

    R^2-3^2=10^2-(R-3)^2……R=(3+√209)/2

  • @GiovanniRusso-d6g
    @GiovanniRusso-d6g 11 ชั่วโมงที่ผ่านมา

    1.st Euclid theorem 100 =x(2x+6) 2x2 +6x -100 = 0 x = (-3+√209 )/2 r = (√209 + 3)/2