Poland Math Olympiad Geometry Problem | 2 Different Methods

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 ก.พ. 2025
  • GET MY EBOOKS
    •••••••••••••••••••••••
    150 Challenging Puzzles with Solutions : payhip.com/b/y...
    Function : payhip.com/b/y...
    Sequence and Series : payhip.com/b/B...
    Differentiation : payhip.com/b/W...
    Indefinite Integration : payhip.com/b/8...
    Definite Integration + Area under the Curve : payhip.com/b/1...
    Trigonometry : payhip.com/b/8...
    OTHER CHAPTERS : COMING SOON.....
    --------------------------------------------------------------------------------
    Join the channel to become a member
    / @mathbooster

ความคิดเห็น • 37

  • @marioalb9726
    @marioalb9726 8 วันที่ผ่านมา +4

    ∠BAC = 360°-160°-(50°+30°+2*10°)
    ∠BAC= 100°
    Inscribed angle theorem:
    ∠BAC is exacty half of ∠BPC = 360°-160°=200°, this means that we can draw a circumference with center on point P, where points A,B,C are points of this circumference.
    Then, AP=BP=PC=AC
    then x = 5 cm ( Solved √ )

    • @marioalb9726
      @marioalb9726 8 วันที่ผ่านมา +2

      Inscribed angle theorem:
      ∠BAC=100° half of ∠BPC=200°
      ∠ABC=30° half of ∠APC=60°
      ∠ACB=50° half of ∠APB=100°
      ∠APC=160°-100°=60°
      Everything matches !!!
      Triangle APC is an equilateral triangle, x= 5 cm

    • @changryu8128
      @changryu8128 8 วันที่ผ่านมา

      You have eyes which are very straightforward to get facts! Amazing.

  • @JoanRosSendra
    @JoanRosSendra 7 วันที่ผ่านมา

    Si dividimos el ángulo BAC en 40-60 la línea divisoria pasará por el punto P porque el ángulo PBA = BAP = 40.
    Es un triángulo isósceles, por tanto
    AP = BP = X
    En el triángulo APC tenemos los ángulos PAC, APC y CAP iguales y con valor 60º.
    Por tanto, se trata de un triángulo equilátero y sus tres lados son iguales:
    X=X=5
    X=5
    Saludos

  • @imetroangola17
    @imetroangola17 8 วันที่ผ่านมา +1

    *Solução 2:*
    Seja H o pé da perpendicular de BC em relação ao vértice P do ∆PBC. Logo, BH = HC, além disso,
    cos (∠PBC) = HC/PC
    cos 10° = HC/x
    HC = x cos 10°
    BC = 2 HC
    BC = 2x cos 10°.
    Sendo A = 100°. Usando lei dos senos no ∆ABC, temos:
    BC/sen A = AC/sen 30°
    2x cos 10°/sen 100° = 5/(1/2)
    2x cos 10°/cos 10° = 10
    2x = 10
    *x = 5.*

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 8 วันที่ผ่านมา +2

    Let H be the perpendicular projection of point A on BC. We have CH=5sin40, BH=AH*√3=5√3cos40. From this BC=5sin40+5√3cos40=10*sin(40+60)=10sin(100). From this x=BC/2cos10=(10sin 100)/(2sin 100)=5.

  • @soli9mana-soli4953
    @soli9mana-soli4953 8 วันที่ผ่านมา +2

    There is a simple solution: extending BA untill intersects the perpendicular CD (D point of intersection) drawing in this way a right triangle whose angles are 30°,60°,90° and setting CD = a, it follows that BC = 2a. And being BPC isosceles we can say that BM = MC = a with M middelpoint of BC.
    Now we can see that triangles ADC and PHC are congruent because have the same angles 10°,80°90° and CD = CH = a
    then
    AC = PC = 5

    • @FrpBypass-n7i
      @FrpBypass-n7i 8 วันที่ผ่านมา

      good solution. I also trird in this way but fail. How many time you take in solving this

    • @soli9mana-soli4953
      @soli9mana-soli4953 7 วันที่ผ่านมา

      @@FrpBypass-n7i I can tell you that it was the third method I tried. In general, I take all the time I need, also because at my age I no longer have any school exams to take. And geometry is pure fun, for which I don’t have to answer to anyone than me

    • @FrpBypass-n7i
      @FrpBypass-n7i 7 วันที่ผ่านมา +1

      Actually I am a math olympiad aspirant and want to increase my problem solving strategy. Your problem solving strategy is very good.

    • @soli9mana-soli4953
      @soli9mana-soli4953 7 วันที่ผ่านมา

      @@FrpBypass-n7i Thank you! The advice I can give you is to learn how to draw lines. A well-drawn line turns a problem into a triviality. Good luck with your Olympiads!

    • @FrpBypass-n7i
      @FrpBypass-n7i 7 วันที่ผ่านมา

      @@soli9mana-soli4953 thanks a lot

  • @thierrygermain5182
    @thierrygermain5182 8 วันที่ผ่านมา +3

    Here we go! Hello, friends !
    Following SINE RULE in triangle ABC : 5 / sin30 = BC / sin100 = BC / cos10
    Following TRIG in triangle PHC (H middle point of BC) : cos10 = HC / x ===> x = HC / cos10 = ( BC / cos10 ) / 2 = 5 / 2sin30 = 5.

    • @ludmilaivanova1603
      @ludmilaivanova1603 8 วันที่ผ่านมา +1

      I did the same.

    • @thierrygermain5182
      @thierrygermain5182 7 วันที่ผ่านมา

      @@ludmilaivanova1603 Tribute of a French russophile ! These Amerloques have no style !

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 8 วันที่ผ่านมา +2

    Triangle BPC is isosceles, hence

    • @RAG981
      @RAG981 8 วันที่ผ่านมา

      Indeed, exactly as I did it. Congratulations.

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 8 วันที่ผ่านมา

      @RAG981 Good luck.

  • @kateknowles8055
    @kateknowles8055 8 วันที่ผ่านมา

    Constructing an equilateral triangle QPC with QP = QC = PC = X Marking S where QP crosses AB , QA = X - 5
    the angles in triangle SAQ will be S = 40 , A= 80 and Q = 60 degrees.
    In isosceles triangle SPB S = 40 , P = 100 and B = 40 degrees PB = X so PS= X also
    SQ = zero so X = 5
    That was a nice surprise. Worth the effort. Thank you , Math Booster

  • @うっちゃん-e8e
    @うっちゃん-e8e 7 วันที่ผ่านมา

    △PBCにおいてBCをYとおくと正弦定理よりY/sin160°₌Y/sin20°₌Y/2sin10°cos10°₌X/sin10°
    よってX₌Y/2cos10° △ABCにおいて正弦定理よりY/sin100°₌Y/cos10°₌5/sin30°₌5/(1/2)₌10
    X₌1/2×Y/cos10°₌1/2×10₌5

  • @GabrieleIris-is7bg
    @GabrieleIris-is7bg 8 วันที่ผ่านมา

    Extend BA to D so that the new triangle BDC is rectangle in D and a 30°, 60°, 90° so CD=1/2BC. Now in triangle ACD, angle ACD=60°-50°=10°, ADC=90° for construction and CAD=80°. In triangle BCP, isosceles, if we call M the midpoint of BC we have triangle MPC congruent to ACD so X=5

  • @imetroangola17
    @imetroangola17 8 วันที่ผ่านมา +1

    *Solução:*
    Facilmente, encontramos A=100°. Note que A = 2 ∠ACB.
    Pela lei do seno no ∆ABC:
    BC/sen 100° = 5/sen 30°
    BC/sen 80° = 5/(1/2) = 10
    BC = 10 sen 80°.
    Usando a lei dos cossenos no ∆PBC:
    BC² = 2x² (1 - cos 160°)
    100 sen² 80° = 2x² (1 - cos 160°)
    Como cos 160° = 1 - 2sen² 80°, então
    100 sen² 80° = 2x² (1 - 1+ 2sen² 80°)
    100 sen² 80° = 4x² sen² 80°
    25 = x²
    *x = 5.*

    • @MataniMath
      @MataniMath 6 วันที่ผ่านมา +1

      Nice solution

  • @jimlocke9320
    @jimlocke9320 8 วันที่ผ่านมา

    We can use Math Booster's method to obtain the equation found at 5:00 and then rearrange it as: x = (((5)(sin(100°))(sin(10°)))/((sin(30°))(sin(160°))) and use a scientific calculator to find that x = 5 to within the precision of our calculator. We wish to prove that x = 5 is an exact answer. We note that AC = 5, CP = x = 5, and

  • @EddieDraaisma
    @EddieDraaisma 8 วันที่ผ่านมา

    Consider a circle with center P and radius x so that B and C are on it. Looking from point A, the center angle of segment BC equals 200 deg (=360-160). Angle BAC = 100 deg = 200/2 deg, so point A is also on the circle. Angle ABC = 30 deg, then angle APC = 60 deg. Angle ACP = 60, so triangle ACP is equilateral. Then X = AP = AC = 5.

  • @Eror7403
    @Eror7403 8 วันที่ผ่านมา

    Eres muy bueno explicando.
    Yo, que no entiendo inglés, te entiendo. 👍

  • @bilgihancelebi1911
    @bilgihancelebi1911 8 วันที่ผ่านมา

    160 derecenin olduğu köşe çemberin merkezi 100 derecenin olduğu köşe çemberin üzerindeki çevre açı olur. Bu köşeleri birleştirince sağ tarafta eşkenarüçgen oluşur ve x=5 çıkar.

  • @ina-j2p
    @ina-j2p 7 วันที่ผ่านมา

    AP=x=5
    ∵二等辺三角形の底角は等しい.

  • @oscarcastaneda5310
    @oscarcastaneda5310 7 วันที่ผ่านมา +1

    We think Alike, my solution was along the lines of the first method : )
    In the end I arrived at 4x²sin²(80°) = 100sin²(80°) from which x = 5.

  • @СтасМ-ъ8б
    @СтасМ-ъ8б 7 วันที่ผ่านมา

    !!! Короткое решение! :
    Из точки P отложим отрезок PN = x на прямую AC.
    Возможны 2 случая:
    1) CN < 5. Тогда ∠PNC= ∠PCN=60°. ( т.к.PN=PC=x )
    ∠BPN=100°.
    И ∠NBP= ∠BNP=40° (т.к. BP=PN=x )
    ! Противоречие:
    И ∠ABP=40 , и ∠NBP=40°.
    2) CN>5
    Аналогично получим противоречие-
    И ∠NBP=40°, и ∠ABP=40°.
    Тогда точки N и A совпадают. Тогда очевидно
    треугольник APC равносторонний. Т.е. x=5.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 3 วันที่ผ่านมา

    (5)^2=25 {30°B+50°C+50°A}={130°BCA+50°D}=180°BCAD 50^130 50^60^70 5^6^7 5^6^3^4 5^3^3^1^4 2^3^1^1^2^2 1^3^2^1 3^2 (BCAD ➖ 4BCAD+2). {160°A+10°B+10°C}=180°ABC 10^10^160 5^5^5^5^80^80 2^3^2^3^2^3^2^3^2^3^2^3 1^1^1^1^1^1^1^3^1^1^1^1^1^2 1^3^1^2 32(ABC ➖ 3ABC+2).

  • @changryu8128
    @changryu8128 วันที่ผ่านมา

    5(AB)sin(100) = 2(AB)(BM)sin(30), where (AB) = length of line AB, M is the point of middle of BC. So, 5sin(100) = b, b = (BM).
    cos(10) = b/x. x = 5sin(100)/cos(10). You know, sin(100) = sin(90 + 10). So, x = 5. Math Booster, how about my solution? Please, tell me!

  • @nenetstree914
    @nenetstree914 8 วันที่ผ่านมา +1

    5

  • @CawasKapadia
    @CawasKapadia 5 วันที่ผ่านมา

    X = 4.996

  • @giuseppemalaguti435
    @giuseppemalaguti435 8 วันที่ผ่านมา

    È troppo semplice

  • @matthieudutriaux
    @matthieudutriaux 8 วันที่ผ่านมา +1

    @marioalb9726 : best method !
    My method :
    X=((5*cos(50/180*Pi)+5*sin(50/180*Pi)/tan(30/180*Pi))/2)/sin((160/2)/180*Pi)
    X=5/2*(cos(50/180*Pi)+sin(50/180*Pi)/(1/sqrt(3)))/sin(80/180*Pi)
    X=5*(cos(50/180*Pi)*1/2+sin(50/180*Pi)*sqrt(3)/2)/cos(10/180*Pi)
    X=5*(cos(50/180*Pi)*cos(60/180*Pi)+sin(50/180*Pi)*sin(60/180*Pi))/cos(10/180*Pi)
    X=5*cos((50-60)/180*Pi)/cos(10/180*Pi)
    X=5*cos(10/180*Pi)/cos(10/180*Pi)
    X=5

  • @marcelojabuti3619
    @marcelojabuti3619 6 วันที่ผ่านมา +1

    Thank God!! You are very slow!! तुम बहुत धीमे हो