Germany Math Olympiad | A Very Nice Geometry Problem

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ม.ค. 2025

ความคิดเห็น • 31

  • @soli9mana-soli4953
    @soli9mana-soli4953 21 ชั่วโมงที่ผ่านมา +2

    PQN is a 3,4,5, right triangle then PN = 3
    BQ = MQ = AN = x (two tangents theorem)
    AP = PM = 3 + x
    being PQ = 5 it follows
    PQ = x + 3 + x = 5
    x = 1

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب วันที่ผ่านมา +4

    Let G be the point of contact with the semicircle PG=PA=3+x ,QB=QG=x from which PQ= 3+x+x=5, so x=1

    • @nexen1041
      @nexen1041 15 ชั่วโมงที่ผ่านมา

      Exactly

  • @Eror7403
    @Eror7403 16 ชั่วโมงที่ผ่านมา +2

    6:09 PNQ triángulo notable de 37°,53° y 90°.
    Lados : 3, 4 y 5
    Entonces : 5-2x = 3
    5-3 = 2x
    2 = 2x
    1 = x

    • @nexen1041
      @nexen1041 15 ชั่วโมงที่ผ่านมา

      Life is easy 👍

  • @oscarcastaneda5310
    @oscarcastaneda5310 20 ชั่วโมงที่ผ่านมา +2

    I solved for x in the right triangle with sides of (5 - 2x), 4, and 5. With this, x = 1.

  • @rachidmsmdi6433
    @rachidmsmdi6433 13 ชั่วโมงที่ผ่านมา +1

    X/2=2/(5-x)
    5x-x²=4
    X²-5x+4=0
    (X-1)(X-4)=0
    X=1(x

  • @marioalb9726
    @marioalb9726 17 ชั่วโมงที่ผ่านมา +1

    Similarity of right triangles:
    x/r = r/(5-x)
    x(5-x) = r² = 2² = 4
    x² - 5x + 4 = 0 --> x=1 cm (Solved √)

  • @hanswust6972
    @hanswust6972 21 ชั่วโมงที่ผ่านมา +1

    No need of a second grade equation.
    Triangle PNQ is a well known 3-4-5 one so that PN = 5 - 2X = 3.
    Hence, *X = 1*

  • @うっちゃん-e8e
    @うっちゃん-e8e วันที่ผ่านมา +1

    半円の中心をOとする。PQと円の接点をR、P、Q、RからOに直線を引く。∠APO₌αとすると∠BQR₌2π₋α
    △BOQと△ROQは合同より∠BQO₌∠RQO ∠BQO₌(π₋α)/2₌π/2₋α/2よって∠BOQ₌αより△APO∽△BOQ
    AP₌YとおくとY:2₌2:X Y₌4/X PR₌Y₌4/X、QR₌XよりX₊4/X₌5 X^2₋5X₊4₌(X₋4)(X₋1)₌0
    X<2よりX₌1

  • @kateknowles8055
    @kateknowles8055 17 ชั่วโมงที่ผ่านมา

    Thank you for another nice problem.
    We are given a diagram where AP appears to be greater than X with a tangent sloping down from left to right.
    Usually nothing is assumed from the diagram unless specifically stated to begin with.
    OT = 2 and TQ = X where O is the midpoint of AB and PQ touches the semicircle at T and QB is the other tangent from Q.
    PA = 5 - X = PT , tangents from P.
    Triangle POQ has a right angle at O, because AP is parallel to BQ, so angles at P and Q are supplementary and their halved angles add to 90 degrees
    By Pythagoras' theorem PO.PO + QO.QO = 5.5 PA.PA +OA.OA = PO.PO and QB.QB + OB.OB = OQ.OQ and these can give a quadratic equation to solve for X.
    OQ.OQ =X.X + 2.2 OP.OP = (5 - X)(5 - X) + 2.2 so X.X + 4 + (25 +X.X-10X) + 4 = 5.5
    collecting terms , and taking 25 away both sides 2.X.X - 10X + 8 =0 X.X -5X + 4 = 0 X= (1/2)( 5 +/ - sqrt(25 - 16)) X = 4 or X = 1
    Thinking about this; { either} PA = 4 and X = 1 { or X =4 and PA = 1 in which case the diagram is a very poor illustration.}
    X = 1 { or 4 }

  • @zawatsky
    @zawatsky 21 ชั่วโมงที่ผ่านมา +1

    Простая задачка. Из равенства касательных видим, что РА=5-х. Подымаем АВ выше - ещё минус х, т. е. 5-2х. Что мы видим теперь? - Правильно! Прямоугольный треугольник с гипотенузой 5 и большим катетом 4. Сразу становится понятно, что это за треугольник. Таким образом 5-2х=3, откуда -2х=-2⇔х=1.

    • @nexen1041
      @nexen1041 15 ชั่วโมงที่ผ่านมา +1

      Great👍
      This is easiest way to solve it. I did the sane

    • @zawatsky
      @zawatsky 15 ชั่วโมงที่ผ่านมา +1

      @@nexen1041 египтяне жили давно, но здорово облегчили потомкам жизнь. )

  • @Antony_V
    @Antony_V 5 ชั่วโมงที่ผ่านมา

    Alternatively triangle POQ is right angled in O and, called BQ "x", by 2nd Euclid's theorem x(5-x)=2^2. That gives x=1 or x=4. Supposed (in the figure) BQ x=BQ=1 and AP=4

  • @florianbuerzle2703
    @florianbuerzle2703 23 ชั่วโมงที่ผ่านมา

    Drop a perpendicular QT onto AP. Then PTQ ist a 3-4-5 right triangle with PT = 3. Then reflect ABQP at AB, so P'Q'QP is a tangential quadrilateral with incircle and area = r∙s = 2(4x + 16)/2 = 4x + 16. P'Q'QP ist also a trapezoid with area = (4x +6)/2 ∙ 4 = 8x + 12. So solving 8x + 12 = 4x +16 for x results in x = 1.

  • @harikatragadda
    @harikatragadda วันที่ผ่านมา +1

    Join QO.
    ∆QBO is Similar to ∆OMP
    x/2 = 2/(5-x)
    x²-5x+4=0
    x = 1, discarding its other root.

  • @himo3485
    @himo3485 23 ชั่วโมงที่ผ่านมา

    √[5^2-4^2]=3
    3+x=5-x 2x=2 x=1

  • @santiagoarosam430
    @santiagoarosam430 15 ชั่วโมงที่ผ่านมา

    AB=2*2=4 ; PQ=5=(5-X)+X---> Proyección vertical de PQ=3---> PA=5-X=3+X---> X=1.
    Gracias y un saludo cordial

  • @FrpBypass-n7i
    @FrpBypass-n7i วันที่ผ่านมา

    It can be done in two step.PA and pM are equal and QB and QM are equal. So x=1

  • @JoanRosSendra
    @JoanRosSendra 11 ชั่วโมงที่ผ่านมา

    Trazamos los segmentos PO, OM y OQ y obtendremos 3 triángulos rectángulos:
    PMO, OMQ y POQ
    MQ=QB=X
    PM = 5-X
    En el triángulo PMO
    (5-X)² + 2² = PO²
    En el triángulo OMQ
    2² + X² = OQ²
    En el triángulo POQ
    PO² + OQ² = PQ²
    (5-X)² + 2² + 2² + X² = 25
    25-10X+X²+8+X² = 25
    2X²-10X+8=0
    X² - 5X + 4 = 0
    X1=4, se rechaza porque no puede tener un valor superior al radio.
    X2 = 1
    X = 1
    Saludos

  • @dr-murat-aydin
    @dr-murat-aydin 21 ชั่วโมงที่ผ่านมา

    The mean "radius" helf of the distance of the longest line that accross the circle
    Here, in this example, the radius is 2,
    So that, AO=1 OB=1

    • @kateknowles8055
      @kateknowles8055 17 ชั่วโมงที่ผ่านมา

      longest line across is diameter which is two times radius Radius = OA = OB = 2 (given) AB = 4

  • @wakeuppeople7180
    @wakeuppeople7180 13 ชั่วโมงที่ผ่านมา

    As someone else has already shown here, the problem has 2 valid solutions, x=1 and x=4. Although this is not apparent from the sketch presented, the trapezoid ABQP can have either the left or the right side equal to 4 (and the other equal to 1) if all possible configurations are considered. The condition imposed by the presenter for the segment PN (implying that 5-2x must be positive) to eliminate the x=4 solution is unwarranted, since this segment does not represent an absolute length value (which must indeed be positive), but a relationship between two segments whose sum is positive and constant, and in this context a negative value means that one of the segments is smaller than the other one by complementarity (not negative in absolute value). So, the solution x=4 is valid in the configuration where the left side of the trapezoid is smaller than the right side, which is the mirror image of the original trapezoid.

  • @cyruschang1904
    @cyruschang1904 4 ชั่วโมงที่ผ่านมา

    (5 - 2x)^2 + 4^2 = 5^2
    5 - 2x = 3
    x = 1

  • @sakurayayoi-p2r
    @sakurayayoi-p2r 23 ชั่วโมงที่ผ่านมา

    別解法 ∠POA=∠POM=a、∠MOQ=∠QOB=b、2a+2b=180、a+b=90。PO二乗+OQ二乗=PQ二乗。
    25=(5-x)二乗+4+4+xx。0=(x-4)(X-1)。x<2。X=1。

  • @giuseppemalaguti435
    @giuseppemalaguti435 วันที่ผ่านมา

    5-x-x=3...x=1

  • @nexen1041
    @nexen1041 15 ชั่วโมงที่ผ่านมา

    You went so far and made unnecessary calculatioss. Write triangle with one side equals to 4 and hyperteneous equal to 5 the misSing side length is 3 which is also equal to 5 − 2X. From there you could get the X value which is 1.
    So easy

  • @nenetstree914
    @nenetstree914 22 ชั่วโมงที่ผ่านมา

    1

  • @五十嵐特許事務所
    @五十嵐特許事務所 12 ชั่วโมงที่ผ่านมา

    In the figure, it looks like PA>QB, i.e. 5-X>X, but there is no such restriction in the problem. Therefore, the problem is valid even when X=4. If we only consider the case where X=1, then the answer is not complete.