Calculate area of Green Triangle | Green triangle and Blue semicircle are inscribed in the square

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 พ.ย. 2024

ความคิดเห็น • 63

  • @bigm383
    @bigm383 ปีที่แล้ว +6

    Thanks Professor. Great problem!❤🥂👍

    • @PreMath
      @PreMath  ปีที่แล้ว +2

      You are very welcome!
      Glad to hear that!
      Thanks for your feedback! Cheers!
      You are awesome. Keep smiling👍
      Love and prayers from the USA! 😀

    • @codingtogether1631
      @codingtogether1631 ปีที่แล้ว +1

      @@PreMath How can we solve this Professor or anybody else? 2x + (16/(2^x)) = 10 , solve for x . the answer is 1 but process?

  • @montynorth3009
    @montynorth3009 ปีที่แล้ว +3

    Connecting O to B, and O to F, forms 2 congruent triangles OBC and OBF.
    Tan OBC = 1/2 = 0.5.
    Angle OBC = tan -1 of 0.5 = 26.565 degrees.
    Angle FBC = 2 x 26.565 = 53.13 degrees.
    Angle ABE = 90 - 53.13 = 36.87 degrees.
    Tan 36.87 = AE / 2.
    AE = 2 x tan 36.87.
    AE = 2 x 0.75 = 1.5.

  • @kennethstevenson976
    @kennethstevenson976 ปีที่แล้ว +1

    The tangents to the circle were the key. When I work many problems of this type the repetition helps me remember the two tangent theorem. Thank You.

  • @williamwingo4740
    @williamwingo4740 ปีที่แล้ว +3

    A slightly different aproach:
    area of circle =π/2; area of circle = 4π = πr^2; so r = 1; so far, so good.
    Now considering the right side of the square, draw OB. Since OC = 1 and CB = 2, invoke Pythagoras and
    OB^2 = 2^2 + 2^2 = 5, so OB = √5.
    Applying Pythagoras to triangle OBF, we have BF^2 = OB^2 - 1^2 = 5 - 1 = 4; so BF = 2.
    Let x = DE = EF. They are equal from the two-tangent theorem, and/ or because they are the corresponding sides of the two congruent right triangles DEO and EFO.
    Coming back to triangle EAB and calling on Pythagoras again:
    2^2 + (2 - x)^2 = (2 + x)^2; expanding both sides:
    4 + 4 - 4x + x^2 = (2 + x)^2 = 4 + 4x + x^2; collecting terms, we have
    8 - 4x = 4 + 4x; 4 = 8x; so x = 1/2; and AE = 2 -- 1/2 = 3/2.
    So the area of the green triangle is (1/2) (2) (3/2) = 3/2.
    Cheers. 🤠

  • @jaimeyomayuza6140
    @jaimeyomayuza6140 ปีที่แล้ว +2

    Gracias señor.
    Desde Bogota D.C.

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +1

    Semi circle :
    A = ½πr² = ½π
    r = 1 cm
    Side of square:
    s = 2r = 2 cm
    Green right triangle:
    base = 2
    height = 2-x
    hypotenuse = 2+x
    2²+(2-x)²=(2+x)²
    2²+(2²-4x+x²)=(2²+4x+x²)
    8x = 4
    x = 0,5 cm
    Area Green triangle:
    A = ½b.h
    A = ½ . 2 . (2-0,5)
    A = 1,5 cm² ( Solved √ )

  • @Gastone1982
    @Gastone1982 ปีที่แล้ว +2

    Perfect job! Well done! I have a question: which application you use for that drawings?
    And which for the video?
    You inspire us, thank you!

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Hello dear, we use Camtasia Techsmith utility along with Canva + photoshop. Thanks for asking.
      You are awesome. Keep smiling👍
      Love and prayers from the USA! 😀
      Sorry for the late response.

  • @EnnioPiovesan
    @EnnioPiovesan ปีที่แล้ว +1

    Once we find that the radius is 1 (and the side of the square is 2), and that by the theorem of tangents DE=BF and BF=BC, we can proceed as in the following.
    DEF + AEF = 180°; AEF=CBF (alternate interior angles of two parallel lines (AD ∥ BC) cut by the transversal BE); so DEF+CBF=180°. EO is the bisectrix of DEF, BO is the bisectrix of CBF so EOB is a right triangle with EOB=90°. So by Euclid's first theorem the height OF relative to the hypotenuse EB is the proportional mean between the projections EF and FB and we can write:
    OF²=EF·FB --> 1²=EF·2 --> EF=½
    EF=DE --> AE=2-½=3/2
    Area=½·AB·AE=½·2·(3/2)=3/2

  • @HappyFamilyOnline
    @HappyFamilyOnline ปีที่แล้ว +2

    Great explanation👍
    Thanks for sharing😊😊

  • @santiagoarosam430
    @santiagoarosam430 ปีที่แล้ว +3

    Si (πr²/2)=π/2 → r²=1→r=1 → Lado del cuadrado ABCD, CD=2r=2=CB=BF → ∠OBF=∠FOE → Razón de semejanza =1/2 entre ∆EFO y ∆OFB , ambos triángulos rectángulos por ser OF⟂EB → EF=OF/2=1/2 → EF=DE=1/2 → AE=AD-ED → AE=2-(1/2)=3/2 → Área Verde =Área de ∆EAB =(1/2)2(3/2)=3/2 = 1.5 cm²
    Gracias y un saludo cordial.

  • @rudychan8792
    @rudychan8792 ปีที่แล้ว +5

    I prefer DE=EF=x !
    (2 - x)" + 2" = (2 + x)"
    2" = (2 + x)" - (2 - x)" = 4•2x
    x = 1/2
    AE = 2 - 1/2 = 3/2
    Area = (1/2)•(3/2)•2 = 1.5 cm" 😉

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍
      Love and prayers from the USA! 😀

    • @codingtogether1631
      @codingtogether1631 ปีที่แล้ว +1

      @@PreMath How can we solve this Professor or anybody else? 2x + (16/(2^x)) = 10 , solve for x . the answer is 1 but process?

  • @spiderjump
    @spiderjump ปีที่แล้ว +4

    Join the center of the semi circle to points B and E and F.
    Triangles OFB and OCB congruent (rhs)
    Triangles EDO and EFO are congruent.
    By labelling angles of the above mentioned triangles we can deduce OFB and EDO are similar. Since OF=1 cm and FB = 2 cm, ED =1/2 cm, EA= 1.5 cm and area of ABE=1/2x2x1.5=1.5cmsq

  • @AmirgabYT2185
    @AmirgabYT2185 8 หลายเดือนก่อน +1

    S=1,5 cm²

  • @codingtogether1631
    @codingtogether1631 ปีที่แล้ว +1

    How can we solve this Professor or anybody else? 2x + (16/(2^x)) = 10 , solve for x . the answer is 1 but process?

  • @misterenter-iz7rz
    @misterenter-iz7rz ปีที่แล้ว +4

    So beautiful design of the figure 🤩. First we note that there are two pairs of similar right angled triangles, so OF=1, FE=1/2=DE, thus AE=3/2, so the answer is 3/2x2/2=3/2, done.😊

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍
      Love and prayers from the USA! 😀

    • @ashieshsharmah1326
      @ashieshsharmah1326 ปีที่แล้ว +3

      How did you get FE= 1/2

    • @misterenter-iz7rz
      @misterenter-iz7rz ปีที่แล้ว +3

      @@ashieshsharmah1326 OEF is similar to OBF.

    • @ashieshsharmah1326
      @ashieshsharmah1326 ปีที่แล้ว +1

      @@misterenter-iz7rz thanks 🤩 . One more question how did you conclude that angle BOE is 90° . Please reply

    • @misterenter-iz7rz
      @misterenter-iz7rz ปีที่แล้ว +1

      @@ashieshsharmah1326 2a+2b=180=COD, so a+b=90.🙂

  • @ashkanjeihoori1865
    @ashkanjeihoori1865 ปีที่แล้ว

    Can we say that the quadrangle OCBF is similar to quadrangle DOFE (All four angles in both are equal) and so the relations between corresponded sides in these two quadrangles are equal so we can find DE part and then calculate the area of ABE triangle.

  • @KAvi_YA666
    @KAvi_YA666 ปีที่แล้ว +1

    Thanks for video.Good luck sir!!!!!!!!!!!!

  • @mega_mango
    @mega_mango ปีที่แล้ว +3

    Спасибо Вам большое. Мой интерес к математике и мои скиллы в ней вскармливались в том числе Вашими задачами

    • @PreMath
      @PreMath  ปีที่แล้ว

      Отличный!
      Добро пожаловать!
      Рад слышать!
      Ты обалденный. Так держать 👍
      Любовь и молитвы из США! 😀

  • @keithwood6459
    @keithwood6459 ปีที่แล้ว +1

    Didn't see the tangent pairs. Nice solve.

  • @anibalarostegui5574
    @anibalarostegui5574 ปีที่แล้ว +1

    The easiest way I find: Getting radis = 1 => esquare is 2x2(side times side), then in the "green triangle" we get big leg(mayor hick) = 2, and cos' it's similar to 3/4/5 triangle, then 4.k=2("k" is the ratio/proportion = 1/2), so for 3 the hick is 3×(1/2) = 3/2, so taking this hick as height, and 2 as a base, we get [(3/2) × 2]/2 = 3/2 , 1.5 cm² as the area. Done!
    The way the professor do is good to manage/use other algebra/geometrics conceps, then is too valid also. It depende on the grade/complexity we want to teach/learn some.
    My greetings to all.
    (Sorry about my english). 😑/😅
    👍😜🙃😋🤩🇦🇷⭐⭐⭐

  • @khatharrmalkavian3306
    @khatharrmalkavian3306 ปีที่แล้ว

    Got me twice with the two tangent theorem. After the first one I was thinking of trying to work out the intersection by calculating the sphere intersect, but I figured you'd have something much easier, so I unpaused and you did, lol.

  • @hcgreier6037
    @hcgreier6037 ปีที่แล้ว +1

    Easy one.
    Circle: r²·π/2 = π/2 => r = 1
    Square: s = 2·r = 2
    QB = sqrt(1²+2²) = sqrt(5)
    BF = sqrt((sqrt(5)² - 1²) = sqrt(4) = 2
    Then, with x = DE = EF, we have
    BE² = AB² + AE²
    (BF + x)² = AB² + (AD - x)²,
    BF = AD = 2,
    (2 + x)² = 2² + (2 - x)², which reduces to x = 1/2
    Area = (2 - 0.5)·2 / 2 = 3/2 cm²

  • @ybodoN
    @ybodoN ปีที่แล้ว +3

    The sides of the right kites OCBF and ODEF are in a 2:1 ratio.
    So the area of the green triangle is 4 - 2 - 1/2 = 3/2 = 1,5 cm².

  • @zsoltszigeti758
    @zsoltszigeti758 ปีที่แล้ว +1

    BCOF and DEFO are similar deltoids => DE/DO=CO/BC => DE=1/2

  • @sokunwu
    @sokunwu ปีที่แล้ว

    Thanks professor 😊 . Very good problem and excellent explanation .

  • @mariangorski
    @mariangorski ปีที่แล้ว +1

    There is a square area 1m2. You need to do a truncated cone that has max. Volume. Find a diameter on a top & on the bottom of this cone & side surface made from this square area
    Draw a development of this parts on this 1m2 area.

  • @ramakrishnanak9949
    @ramakrishnanak9949 ปีที่แล้ว +1

    3/2 sq. units

  • @reynaldowify
    @reynaldowify ปีที่แล้ว +1

    Is the rectangle a square?

    • @reynaldowify
      @reynaldowify ปีที่แล้ว +1

      Sorry, it is clarified a time later. Happens that i try to solve the problem without waching further.

    • @reynaldowify
      @reynaldowify ปีที่แล้ว +1

      @@zzzaphod8507 You are wrught. Sorry, i did not hear it clearly the first time

  • @claudeabraham2347
    @claudeabraham2347 ปีที่แล้ว +1

    I love it!

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks dear

  • @pranavamali05
    @pranavamali05 ปีที่แล้ว +1

    👍

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว +1

    3/2

  • @Copernicusfreud
    @Copernicusfreud ปีที่แล้ว

    Yay! I solved it.

  • @n.662
    @n.662 ปีที่แล้ว

    r=1, side of square =2, side of triangle = 2, 2x, 2+x. further according to the Pythagorean theorem: (2+х) ²=2²+(2-х) ².
    Second method: ∆QCB=∆QFB, QF=QC=r,

  • @hieuphan8038
    @hieuphan8038 ปีที่แล้ว +1

    Area=1.5

  • @theoyanto
    @theoyanto ปีที่แล้ว +2

    I made myself laugh with this one I worked out x but failed to see the significance, oh boy a definite Homer Simpson moment...Doh!🤓

  • @ronaldmontgomery8446
    @ronaldmontgomery8446 ปีที่แล้ว +1

    I keep looking for him to make a mistake so I double check all of his work.

  • @TheHappymetler
    @TheHappymetler ปีที่แล้ว

    Just mention:
    FB/OF=OF/EF or in Numbers 2/1=1/0,5 or (x)

  • @Caloteira1665
    @Caloteira1665 ปีที่แล้ว +1

    Sem saber o teorema do cara eu percebi que bf era igual a bc,😅

  • @shahnwazkhursheed7213
    @shahnwazkhursheed7213 ปีที่แล้ว +1

    Hello sir 🤗

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Good morning dear
      Thanks for your continued love and support!
      You are awesome. Keep smiling👍
      Love and prayers from the USA! 😀

  • @reyhanzeynep7306
    @reyhanzeynep7306 ปีที่แล้ว

    Güzel soru

  • @quigonkenny
    @quigonkenny 8 หลายเดือนก่อน

    Your solution was too simple. Let's see if we can make this unnecessarily complex yet still mathematically sound...
    Semicircle O:
    A = πr²/2
    π/2 = πr²/2
    r² = (π/2)(2/π) = 1
    r = 1
    By Two Tangent Theorem, BF = BC = 2r = 2. Let G be the point on CD and J be the point on AB where GJ is perpendicular to AB and CD and passes through F. Let FJ = x and GF = 2-x.
    Let ∠FOG = α and ∠GFO be β, where β = 90°- α. As ∠OFB = 90°, ∠BFJ = α, and as ∠FJB 90°, ∠JBF = α. Therefore ∆OGF and ∆FJB are similar.
    Triangle ∆OGF:
    OG/FO = FJ/BF
    OG/1 = x/2
    OG = x/2
    a² + b² = c²
    (x/2)² + (2-x)² = 1²
    x²/4 + 4 - 4x + x² = 1
    x² + 16 - 16x + 4x² = 4
    5x² - 16x + 12 = 0
    x = [-(-16)±√(-16)²-4(5)12]/2(5)
    x = (16±√256-240)/10
    x = 8/5 ± √16/10 = 8/5 ± 2/5
    x = 8/5+2/5 | x = 8/5-2/5
    x = 10/5 = 2 ❌ | x = 6/5 ✓
    As FJ = 6/5 and BF = 2 = 10/5, ∆FJB is a 2:5 ratio 3:4:5 Pythagorean Triple triangle and JB = 4(2/5) = 8/5.
    As they share ∠JBF and sides JB and BF, ∆FJB and ∆EAB are similar.
    Triangle ∆EAB:
    EA/AB = FJ/JB
    h/2 = (6/5)/(8/5) = 3/4
    h = 2(3/4) = 3/2
    A = bh/2 = 2(3/2)/2 = 3/2 = 1.5 cm²

  • @h.g.buddne
    @h.g.buddne ปีที่แล้ว

    Since the triangles DEO and BOF are similar DE is 0.5.