Can you solve for X and Y? | Two semicircles in a rectangle | (Math skills explained) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ม.ค. 2025

ความคิดเห็น • 50

  • @wackojacko3962
    @wackojacko3962 ปีที่แล้ว +2

    @ 1:06 Thales Theorem is a special case of Euclid's Inscribed Angle Theorem. And of course we immediately engage Pythagorean. Soooooooo cool! 🙂

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Spot on!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @JSSTyger
    @JSSTyger ปีที่แล้ว +3

    You do outstanding work. This one had me stumped.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thanks for your feedback! Cheers! 😀
      You are the best. Keep it up 👍

  • @tombufford136
    @tombufford136 ปีที่แล้ว +1

    At a quick glance, Important to note the lines AP and PC are chords of circles and not the diameters.

  • @wackojacko3962
    @wackojacko3962 ปีที่แล้ว +2

    @ 5:20 Adding 2xy too equation 2...absolutely ingenious! @ 6:50 , same thing! @ 9:44 , most ingenious! 🙂

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Excellent!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @marioalb9726
    @marioalb9726 ปีที่แล้ว +7

    y = R
    Tangent secant theorem:
    (x -R)² = 7. (7+11)
    (x - y)² = 126
    x = y + √126
    Pytagorean theorem:
    x² + y² = (7+11)²
    (y + √126)² + y² = 18²
    y² + 2.√126.y+126 + y² =324
    2y² + 2.√126.y -198 = 0
    y² + √126.y -99 = 0
    y = 5,811 cm
    x = 17,036 cm ( Solved √ )

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @ybodoN
    @ybodoN ปีที่แล้ว +3

    Once we have xy = 99 and x² + y² = 324, we can set the quadratic equation x⁴ − 324x² + 9801 = 0.
    Since we would get the same equation with y, the positive solutions 3 √(18 ± √203) are x and y.
    These can be denested to obtain x = 3/2 (√58 + √14) and y = 3/2 (√58 − √14) in their exact form.
    PreMaths' amazing solution avoids both the quadratic equation and the denesting operation! 🤩

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @parthtomar6987
    @parthtomar6987 ปีที่แล้ว +3

    Nice solution sir

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks and welcome
      You are awesome. Keep it up 👍

  • @JLvatron
    @JLvatron ปีที่แล้ว +2

    Wow, brilliant!

    • @PreMath
      @PreMath  ปีที่แล้ว

      Excellent!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @mohabatkhanmalak1161
    @mohabatkhanmalak1161 ปีที่แล้ว +2

    Wow! I am amazed how you solved it teacher. I was thinking of using Trigonometry, but I kept watching the clip and it is wonderful how you got the answers. Thanks for posting.✨

  • @soli9mana-soli4953
    @soli9mana-soli4953 ปีที่แล้ว +3

    An alternative solution can be found with tangent secant theorem. Called OH the perpendicular to BC from the center of the bigger circle, we can write:
    AC : CH = CH : CP
    18 : CH = CH : 7
    CH = √ 126
    Now applying Pythagorean theorem on ABC right triangle we get:
    y² + (y+ √ 126)² = 18²
    y² + √ 126y - 99 = 0 then
    y = (√ 522 - √ 126)/2
    x = (√ 522 - √ 126)/2 + √ 126) = (√ 522 + √ 126)/2

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

    • @waheisel
      @waheisel ปีที่แล้ว +1

      Nice! Math is so cool that there are different proof for us to discover. As usual PreMath's solution was more elegant and clever than mine (I brute forced it with a lot of algebra including denesting radicals and rationalizing the denominators).. Your solution is even more concise!

    • @soli9mana-soli4953
      @soli9mana-soli4953 ปีที่แล้ว

      @@waheisel thank you

  • @Aryan_1Official
    @Aryan_1Official ปีที่แล้ว +3

    Best explanation

    • @PreMath
      @PreMath  ปีที่แล้ว

      Glad you think so!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @chelliahRaveedrarajah
    @chelliahRaveedrarajah ปีที่แล้ว +2

    Very interesting question sir.

    • @PreMath
      @PreMath  ปีที่แล้ว

      Many many thanks
      You are awesome. Keep it up 👍

  • @toontime1415
    @toontime1415 ปีที่แล้ว +3

    Sir, you are a good teacher for us to teach Mathematics. Thank you sir. Our greetings to achieve sir.🎉🎉🎉

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for your continued love and support!
      You are awesome. Keep it up 👍
      Love and prayers from the USA! 😀

  • @Abby-hi4sf
    @Abby-hi4sf ปีที่แล้ว +2

    Beautiful!

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers!
      You are awesome. Keep it up 👍

  • @markkinnard796
    @markkinnard796 ปีที่แล้ว

    Excellent!

  • @HappyFamilyOnline
    @HappyFamilyOnline ปีที่แล้ว +2

    Amazing 👍
    Thanks for sharing 😊

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers!
      You are awesome. Keep it up 👍

  • @charlesbromberick4247
    @charlesbromberick4247 6 หลายเดือนก่อน

    It´s not clear to me why the diagonal passes through the point of tangency, but I believe it.

  • @shreyanshjain2034
    @shreyanshjain2034 ปีที่แล้ว +1

    Sir please tell proof of ceva's theorem and menelau theorem

    • @PreMath
      @PreMath  ปีที่แล้ว

      Please give me time to do my homework. These proofs are little challenging. Cheers

  • @DDX01
    @DDX01 ปีที่แล้ว

    Very nice but in the last we should put the x value in eq. 01
    xy=99
    17.04*y=99
    y=99/17.04
    y=5.81...... easy way

  • @bigm383
    @bigm383 ปีที่แล้ว +2

    ❤👍😀

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers! 😀
      You are awesome. Keep it up 👍

  • @soniamariadasilveira7003
    @soniamariadasilveira7003 ปีที่แล้ว +3

    A Very hard question Sir

    • @PreMath
      @PreMath  ปีที่แล้ว

      Yes! It's a challenging one!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @maturaczynicuda
    @maturaczynicuda ปีที่แล้ว +2

    Beautiful

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thank you! Cheers!
      You are awesome. Keep it up 👍

  • @wackojacko3962
    @wackojacko3962 ปีที่แล้ว +2

    Comment for yesterday's Menelaus problem.
    Cevians! They're everywhere!
    All Hail Giovanni Ceva! 🙂

    • @PreMath
      @PreMath  ปีที่แล้ว +1

      Excellent!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @arnavkange1487
    @arnavkange1487 ปีที่แล้ว +2

    Very hard sum

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว

    x°2+y°2=324...x^2=162+√(162^2-99^2)=290,.....mah,i conti non sono interi...ho dei dubbi

    • @PreMath
      @PreMath  ปีที่แล้ว

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

    • @giuseppemalaguti435
      @giuseppemalaguti435 ปีที่แล้ว

      ​@@PreMath...hai scritto 17.04...allora il mio risultato è ok!!!!

  • @padraiggluck2980
    @padraiggluck2980 ปีที่แล้ว

    Professor, your source of problems appears to be inexhaustible ❗️