ЗАДАЧА ИЗ ГАРВАРДА. Учись, студент!

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 พ.ย. 2024

ความคิดเห็น • 68

  • @valeraag5634
    @valeraag5634 7 หลายเดือนก่อน +4

    Валерий, кроме алгебраического и геометрического, есть ещё тригонометрическое решение Smax. Пусть

  • @Snuryus
    @Snuryus 7 หลายเดือนก่อน +10

    Второй вопрос доказывал чуть по другому. Провел вторую диагональ в прямоугольнике. Обе его диагонали при любых трансформациях будут R. А площадь можно найти как половина произведения диагоналей на синус угла между ними. Тогда можно сказать, что площадь прямоугольника зависит только от синуса угла между его диагоналями. Ну а максимальное значение синуса - это единица, при угле в 90 градусов, когда прямоугольник является квадратом.

  • @AlexeyEvpalov
    @AlexeyEvpalov 7 หลายเดือนก่อน +8

    Вторая часть. Площадь прямоугольника S=ab, высота a=Rsint, основание b=Rcost, где 0

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน +2

      Супер!

    • @sergeykitov2760
      @sergeykitov2760 7 หลายเดือนก่อน +4

      Тут не надо брать производную, sin(t)cos(t) = sin(2t)/2, соответственно максимум достигается, когда 2t = pi/2.

  • @galinaberlinova3896
    @galinaberlinova3896 7 หลายเดือนก่อน +2

    Решила методом координат. Центр окружности (0;0), уравнение окружности x^2+y^2=r^2. Отсюда, если одна сторона x, то вторая корень из r^2-x^2. Дальше умножаем, находим производную, приравниваем нулю и получаем r^2/2. Алгебраическое решение. Спасибо за задачу!

  • @Электронная_логика
    @Электронная_логика 7 หลายเดือนก่อน +2

    Зачем для второго вопроса уравнение 4 степени? Задача сводится к тому, что бы найти максимальную площадь прямоугольника с заданным полупериметром (суммой двух соседних сторон), который у нас равен R. Одну сторону назовём Х, тогда вторая будет R-X. S=X(R-X), ==> S= -X^2+RX, а дальше уже исследуем график и видим, что это перевёрнутая парабола, смещённая по оси Х на величину R/2. Отсюда получаем наибольшую площадь при Х=R/2. Раз первая сторона равна R/2, то вторая равна R-R/2, то есть тоже R/2, следовательно прямоугольник с наибольшей площадью будет квадратом.

    • @santashmyakus8516
      @santashmyakus8516 7 หลายเดือนก่อน

      С чего бы полупериметру равняться R? Не всегда. Например, точка (R/2; sqrt(3)R/2).

  • @santashmyakus8516
    @santashmyakus8516 7 หลายเดือนก่อน +1

    Тригонометрический способ Smax:
    2S=2cos(x)sin(x)*R^2 |x от 0 до pi/2|=sin(2x)*R^2

  • @Студент3-ж4б
    @Студент3-ж4б 7 หลายเดือนก่อน +7

    \\
    /
    В Кембридже после туалета руки моют.
    А в Гарварде на руки не попадают.
    /
    В вине истина, в воде здоровье, в простоте красота.
    Важен стиль!
    Ну не лезет сюда алгебра, производные, ...
    Это же очевидно, господа профессора из Гарварда.
    На рисунке вижу нарисованный sin(2а).
    А где нарисовать cos(2a)?
    \\

  • @kislyak_andrei0
    @kislyak_andrei0 7 หลายเดือนก่อน +3

    сразу подумал о методе, который уже описали в комментариях
    прямоугольник - это четырехугольник, и мы знаем в нем диагонали
    а значит мы знаем площадь этого прямоугольника, и равна она 1\2 *R*R*sina
    sina=

    • @alexnikola7520
      @alexnikola7520 7 หลายเดือนก่อน +1

      гениально

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      Да, это для старших классов. Хотя 9 кл в принципе знает, что от 0 до 180 синус не больше 1. Но соображают еще слабо.

    • @kislyak_andrei0
      @kislyak_andrei0 7 หลายเดือนก่อน

      @@GeometriaValeriyKazakov ну в многих школах об тригонометрическом полукруге расказывают
      мне в школе, например

  • @santashmyakus8516
    @santashmyakus8516 7 หลายเดือนก่อน +1

    Геометрически можно найти Smax по другому:
    Пусть есть т. (х;у) на окружности в первой четверти. Тогда S=x*y. Через неё можно построить секущую x+y=C. Взяв второй точкой(y;x), например. Для точек на секущей x+y=C в 1 четверти S максимальна для квадрата ((x+y)/2;(x+y)/2), т.к. при равном периметре у прямоугольников наибольшая площадь у квадрата.
    Все правые верхние вершины квадратов, соответствующие всем точкам дуги из 1 четверти, лежат на y=x. Максимальная площадь среди которых при у=х на окружности. Т.о. точка (sqrt(2)R/2; sqrt(2)R/2) задаёт максимальную площадь.
    S=(sqrt(2)R/2)*(sqrt(2)R/2)=R^2/2=12,5.
    Ответ: S=12,5
    P.S. Док-во, что среди прямоугольников с равным периметром площадь квадрата максимальна:
    S=х*у=x(с-х) - максимум при x=C/2, т.е. у=С/2. Ч.т.д..
    Док-во:
    Найдём а, что а(с-а)-x(с-х)>=0. Тогда при х=а S=х*у=x(с-х) максимальна.
    Раскрыв скобки, перегруппировав, получим (х-а)(х+а-с)>=0 Это верно при -а=а-с, т.е. а=с/2.
    Итак, при х=у=с/2, где с=х+у, S=x*y максимальна. Ч.т.д..

  • @papa54-y2l
    @papa54-y2l 7 หลายเดือนก่อน +1

    Пусть x и y стороны прямоугольника, полупериметр p = x + y, S(x) =x*(p-x), dS(x)/dx = p-2x = 0; x=p/2 = y, т.е. квадрат.

    • @papa54-y2l
      @papa54-y2l 7 หลายเดือนก่อน +1

      при равных площадях периметр прямоугольника больше, чем у квадрата: пусть x сторона квадрата, Sкв = x^2, пусть стороны прямоугольника a и b, Sпр = ab= x^2, полупериметр квадрата Pкв = 2x = 2 sqrt(ab), полупериметр Pпр =а+b, известно, что (a+b)/2>_sqrt(ab), т.е. (a+b)>_2sqrt(ab), пример: площадь квадрата 4 , периметр 8, прямоугольник с площадью 4 и сторонами 1 и 4 имеет периметр 2*(1+4) = 10.

  • @chelovek25357
    @chelovek25357 7 หลายเดือนก่อน +1

    Спасибо очень интересно

  • @mrLumen2
    @mrLumen2 7 หลายเดือนก่อน +1

    Второй вариант можно и "4-тым классом" решить :).
    1. Наибольшую площадь и наибольший периметр среди всех прямоугольников с заранее заданной диагональю имеет квадрат.
    2. Из этого, если у нас есть квадрат с диагональю (R=5), то его площадь S = 0,5 * R² = 0,5 * 25 = 12,5 кв. ед.

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      Согласен. Только такой теоремы (1. Наибольшую площадь и наибольший периметр среди всех прямоугольников с заранее заданной диагональю имеет квадрат) нет в учебниках, и это задача, которую решают так, как и решил.

    • @papa54-y2l
      @papa54-y2l 7 หลายเดือนก่อน

      у квадрата наименьший периметр

    • @Ale-d6q
      @Ale-d6q 7 หลายเดือนก่อน

      @@papa54-y2l У квадрата периметр равен 4 стороны а у прямоугольника с той же диагональю и стремящегося к нулевым противоположным сторонам равен 2 стороны умноженным на корень из двух , очевидно же у квадрата Периметр больше .

    • @Ale-d6q
      @Ale-d6q 7 หลายเดือนก่อน +1

      @@GeometriaValeriyKazakov Квадрат вписанный в окружность имеет большую площадь и периметр , чем прямоугольник вписанный в данную окружность . Вот пожалуйста .

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      @@Ale-d6q А почему-й это? Кто сказал?

  • @alexnikola7520
    @alexnikola7520 7 หลายเดือนก่อน +1

    если стороны прямоуг а и в... то 1)а^2+в^2=R^2 2) а+1=в+2=R 3)a^2+2a+1=R^2 вычитаем из третьего первое 2a+1-в^2=0 из второго в^2=a^2-2a+1 получаем 2a+1-a^2+2a-1=0, то есть а=4, в=3... так навскидку) ща гляну автора

  • @user-Alexander-1950-Ufa
    @user-Alexander-1950-Ufa 7 หลายเดือนก่อน +1

    А не лучше ли применить тригонометрию, для поиска max? Ведь 10-й класс?..
    x = R*cos(Fi), y = R*sin(Fi); S(Fi) = R^2 * sin(Fi) * cos(Fi) = (1/2) * R^2 * sin(2*Fi).
    Max(S(Fi)) достигается при sin(2*Fi) = 1, (2*Fi) = Pi/2, Fi = (Pi/2) / 2, т.е. когда x=y
    Другой способ
    В точке экстремума, функция S(Fi) - "зависнет", прирост угла - не будет вызывать изменения S(Fi). Работаем в (++) квадранте полного угла. Прирост угла (delta(Fi)) вызовет приросты координат: delta(x) и delta(y), они будут отличатся один от другого - при всех углах (Fi), кроме Fi=45. (Прирост площади на "крыше" прямоугольника) = x*delta(y) - сопроводится убылью на его правой стене = y* delta(x), и меньший прирост delta(y) - будет и при меньшей ширине основания, и наоборот. Полное равенство прироста и убыли площади -
    delta(S) = x*delta(y) - y* delta(x) = 0, будет, когда (x=y) & (delta(y) = delta(x)), это когда Fi=45

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      Спасибо. Можно, но нельзя сказать, что лучше. Это проосто другой способ - тригонометрический. И задача для 8 класса - там нет тригонометрии. Но она - отлично.

  • @zawatsky
    @zawatsky 7 หลายเดือนก่อน +1

    Очевидно же, что из всех прямоугольников наибольшая площадь у квадрата, это должно легко доказываться.

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน +1

      Так мы легко и доказали двумя способами. Только из всех пр-ков с ПОСТОЯННОЙ ДИАГОНАЛЬЮ!

  • @ketibarkava8424
    @ketibarkava8424 7 หลายเดือนก่อน +1

    Здравствуйте , если наибольшую площадь имеет квадрат, построив радиус под 45 ° получим тр , гипотенуза R, а катет R/✓2, то пл.R^2/2

  • @tufoed
    @tufoed 7 หลายเดือนก่อน +1

    Можно еще с помощью теоремы о хордах уравнение составить. Что характерно, оно получится в точности такое же, причем неважно какую пару хорд выбрать.
    А доказывать профессорам Гарварда надо с помощью не меньше, чем уравнения Понтрягина
    P.S. Вообще вторая половина формулируется как "найдите площадь наибольшего квадрата вписанного в окружность" )))

    • @lol_lolipopovich
      @lol_lolipopovich 7 หลายเดือนก่อน +1

      Площадь наибольшего квадрата, вписанного в окружность, вы серьёзно? Вписывается в окружность квадрат однозначно, и его площадь 2R²
      Пожалуйста, не путайте термины, если уж собрались кого-то поправлять

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      Спасибо, друг!

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      Спасибо. Имеется ввиду наибольшего прямоугольника, вписаного подобным образом, то есть с вершинкой в центре окружности. Читайте внимательно условие задачи. Бывает.

    • @tufoed
      @tufoed 7 หลายเดือนก่อน +1

      ​@@GeometriaValeriyKazakov Шутка в том, что во-первых четверть окружности можно заменить на целую (методологически останется та же задача), а во-вторых квадрат является решением.

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      @@tufoed Да, сразу не въехал в это решение, можно рассматривать большой пр-к, ув. в 4 раза.. Отлично, кстати

  • @pojuellavid
    @pojuellavid 7 หลายเดือนก่อน +2

    Уже давно наибольшесть площади для круга и правильного многоугольника объявить "очевидной" и "общеизвестной". А то так можно дойти до доказательства равенства треугольников в решении каждой задачи. Как в роликах мат индийца на Ютубе, где он в каждой задаче объясняет формулу корней кв. уравнения.

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      У нас не правильный, а прямоугольник.

    • @pojuellavid
      @pojuellavid 7 หลายเดือนก่อน

      @@GeometriaValeriyKazakov но в итоге мы же пришли к квадрату! 3:40

  • @Григоров_Алексей
    @Григоров_Алексей 7 หลายเดือนก่อน +1

    Учусь!

  • @КоонстантинКасильяс
    @КоонстантинКасильяс 7 หลายเดือนก่อน +1

    продлить до диаметра, тогда (R-1)^2 = 2(2R-2) -> R=5; R=1 не подходит. тогда S = (R-2)(R-1)=12

    • @santashmyakus8516
      @santashmyakus8516 7 หลายเดือนก่อน +1

      Это откуда? Что-то не пойму. Спс.:
      (R-1)^2 = 2(2R-2), т.е. (R-1)(R-5)=0

  • @dmitriystankiewich516
    @dmitriystankiewich516 7 หลายเดือนก่อน +1

    Да с первого взгляда видно египетский треугольник 3-4-5...

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      Спасибо. Попробуйте решить для произвольных x и y отрезков.

  • @Goldie82.
    @Goldie82. 7 หลายเดือนก่อน +1

    Валерий здравствуйте. Вот вы очень любите решать задачи и геометрические , и алгебраические , а вот такую задачу ( из спичек выложено 6+ 98=97, переложить одну спичку так , чтобы равенство было верным) сможете решить?

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      Конечно, решу. Яндекс такие задачи целыми днями предлагает (не генерации стоят)

    • @Goldie82.
      @Goldie82. 7 หลายเดือนก่อน

      @@GeometriaValeriyKazakov просим, просим👏

  • @zawatsky
    @zawatsky 7 หลายเดือนก่อน +1

    Veritas - истина, по латыни. Поговорку про вино и воду знают многие, чай не бином Ньютона.

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน +1

      Верно. Знают те, что из СССР. Вообще-то это не поговорка, а стихи А. Блока "Незнакомка" ; "И пьяницы с глазами кроликов "In vino veritas!" кричат...".

    • @zawatsky
      @zawatsky 7 หลายเดือนก่อน

      @@GeometriaValeriyKazakov in vina veritas, а дальше идёт продолжение, как по латыни не знаю. Полностью древнеримская поговорка звучала так: истина в вине, а здоровье в воде. Римляне неразбавленное вино не пили, считали это нецивилизованным. В математике вы подкованы, Валерий, а с историей как?🤔

    • @НатальяМихайлова-ц2о
      @НатальяМихайлова-ц2о 7 หลายเดือนก่อน +1

      А рядом, у соседних столиков - лакеи сонные торчат. И пьяницы, с глазами кроликов, I"In vino veritas" - кричат..

    • @zawatsky
      @zawatsky 7 หลายเดือนก่อน

      @@НатальяМихайлова-ц2о не читал, хоть и с литературой у меня порядок. Я знаю первоисточник, из курса истории.☝😎

    • @user-Alexander-1950-Ufa
      @user-Alexander-1950-Ufa 7 หลายเดือนก่อน +1

      У меня в школе, когда я кружок там вёл по радиоэлектронике - целая история вышла, именно с этой частью стихов, с целой строфой. Меня за это оттуда попёрли..

  • @guzellavassimova1750
    @guzellavassimova1750 7 หลายเดือนก่อน +1

    Такие лёгкие задачи в Гарварде?!

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      Да. там геометрия несложная, но доказать наименьшую площадь не так и просто. Ее в Гарварде решают произвдной от функции корень из функции 4-й степени. Это я решил так легко.

  • @adept7474
    @adept7474 7 หลายเดือนก่อน +2

    Учись, студент! А не будешь учиться - то твой диплом будет лопата и лом.
    Так говаривал мой любимый учитель в школе.

  • @Ostap_IbragimovicH
    @Ostap_IbragimovicH 7 หลายเดือนก่อน +1

    А геометрически,покрасивее бы.

    • @GeometriaValeriyKazakov
      @GeometriaValeriyKazakov  7 หลายเดือนก่อน

      Да, но у нас много с алгебраическим мышлением.

    • @user-Alexander-1950-Ufa
      @user-Alexander-1950-Ufa 7 หลายเดือนก่อน +1

      А я уже показал..