Can you find the Radius of the Semicircle? | (Important Geometry skills explained) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ธ.ค. 2024

ความคิดเห็น • 40

  • @robertbourke7935
    @robertbourke7935 10 หลายเดือนก่อน +3

    Got it. Many thanks.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      Great!
      You are very welcome!
      Thanks ❤️

  • @nineko
    @nineko 10 หลายเดือนก่อน +11

    Alternatively, once you have EB, you can use the intersecting chords theorem again, and write (2r - 2√5)•(2√5)=8•8, and the same result follows.

    • @jimlocke9320
      @jimlocke9320 10 หลายเดือนก่อน +1

      Yes, chord DP and AB intersect. Let OA = OB = r (radius). AE = AB - EB = 2r - 2√5.. So, from intersecting chords DP and AB, (2r - 2√5)(2√5) = (8)(8). (4√5)r - 20 = 64. (4√5)r = 84 and r = (84)/(4√5) = 21/(√5) = (21√5)/5. as PreMath also found.
      PreMath could compute r directly by letting OD = r and OE = r - 2√5, without introducing variable b.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      Thanks ❤️

    • @nomad7966
      @nomad7966 10 หลายเดือนก่อน

      А как ты пишешь здесь знак радикала? 😊

  • @andrewstayne503
    @andrewstayne503 10 หลายเดือนก่อน +1

    Sketch the whole circle. Extend DE to make a full chord. Use intersecting chord theorem to find half DE is 4. Using trig find angle B then join Cto A which forms a right angle triangle ACB. Use sine theorem to find AC and pythagoras to find AB, hence Radius is half AB.

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 10 หลายเดือนก่อน

    Beautiful question!!

  • @phungpham1725
    @phungpham1725 10 หลายเดือนก่อน +1

    A possible alternative: Label the angle ABC as alpha. FE=4 so sin alpha= 4/6= 2/3
    so AC/AB= sin alpha= 2/3-----> AC /2R=2/3---> AC= 4R/3
    so we have sq (2R)= sq 14 + sq(4R/3) ----> sq R= sq14 X9/ 20===> R= 21/sqrt5

  • @hcgreier6037
    @hcgreier6037 10 หลายเดือนก่อน +1

    Circle chord theorem: mirroring DE to the bottom, one has 4x as the whole chord, with division x and 3x, so x·3x = 6·8 → 3x² = 48 or x = 4. Then EB = √(6²-4²) = √20 = 2√5.
    Chord theorem again with (2r - 2√5)·2√5 = 8² = 64, hence 4r√5 - 20 = 64 or r = 84/(4√5) = 21/√5.
    It's good practices to rationalize that, so r = 21/√5 · √5/√5 = 21√5/5.

  • @Waldlaeufer70
    @Waldlaeufer70 10 หลายเดือนก่อน +3

    Beautiful problem! 😊
    My approach:
    1) Intersecting chord theorem:
    x * 3x = 8 * 6
    3x² = 48
    x² = 16
    x = 4
    2) Pythagoras:
    x² + y² = 6²
    y² + 16 = 36
    y² = 20 = 4 * 5
    y = 2√5
    3) Intersecting chord theorem:
    y * (d - y) = 2x * 2x = 4x²
    2√5 (d - 2√5) = 4 * 16
    2√5 d - 20 = 64
    2√5 d = 84
    d = 84 / (2√5) = 42/√5 = 42√5 / 5
    4) Radius:
    r = d/2 = 21√5 / 5 ≈ 9.39 units
    P.S. I just see that my plan was quite similar to yours - I just used the intersecting chord theorem twice.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      Thanks ❤️

  • @adept7474
    @adept7474 10 หลายเดือนก่อน +1

    ▲ABC ~ ▲BFE. AB/BC = BF/BE. 2R/14 = 6/2√5. R = 21√5/5.

  • @jamestalbott4499
    @jamestalbott4499 10 หลายเดือนก่อน

    Thank you!

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 10 หลายเดือนก่อน

    By the Law of Proportionality between Chords we have:
    Given the Point F as the point of intersection between the 2 chords. DF = EF = x
    3x/8 = 6/x
    3x^2 = 48
    x^2 = 48/3
    x^2 = 16
    x = 4
    Let angle CBA = alpha
    Let angle CAB = beta
    sin (alpha) = 4/6 = 2/3
    Being C' the projection in diameter AB.
    EF/BF = CC'/14
    CC' = 2/3 * 14 = 28/3 ~ 9,333
    sin (beta) = CC'/AC
    AC = CC' / sin (beta)
    AC = 9,333 / sin (beta)
    AC ~ 12,522
    Area of the Triangle Rectangle ([ABC] = (AC * BC) / 2 = (12,522 * 14) / 2 = 175,308 / 2 ~ 87,654 su
    87,654 = (CC' * 2r) / 2
    97,384 = 9,333 * 2r
    175,308 / 9,333 = 2r
    18,783 = 2r
    r ~ 18,783 / 2
    r ~ 9,39 lu
    Answer: Radius equal ~ 9,39 lu

  • @nunoalexandre6408
    @nunoalexandre6408 10 หลายเดือนก่อน +1

    Love it!!!!!!!!!!!!!!!!!!

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks ❤️

  • @quigonkenny
    @quigonkenny 7 หลายเดือนก่อน

    Extend the semicircle to a full circle and draw EG down from the diameter AB to intersect the new other side of the circumference at G, extending line segment DE into chord DG. Let DF = FE = x. By symmetry, EG = 2x.
    By Intersecting Chords Theorem:
    FC(FB) = FD(FG)
    8(6) = x(3x)
    48 = 3x²
    x² = 48/3 = 16
    x = 4
    Triangle ∆FEB:
    FE² + EB² = BF²
    4² + EB² = 6²
    EB² = 36 - 16 = 20
    EB = √20 = 2√5
    As radii, OA = OB = r. As EB = 2√5, OE = r-2√5. We can now use Intersecting Chords Theorem again.
    DE(EG) = AE(EB)
    8(8) = (2r-2√5)(2√5)
    64 = 4r√5 - 20
    4r√5 = 64+20 = 84
    r = 84/4√5 = 21/√5 = 21√5/5

  • @bekaluu1
    @bekaluu1 10 หลายเดือนก่อน

    Connect C to A and you have a right triangle ABC similar to FBE. Then use proportions to compute AB which is 2r, divide that by 2 and you arrive at the same answer

  • @plamenpenchev262
    @plamenpenchev262 10 หลายเดือนก่อน

    Twice chrd theorem
    x*3x = 8*6
    x = 4
    Then EB = 2sqrt(5) = a
    Then second couple of chords
    (2r - a)*a = 2x*2x = 8*8

  • @marcgriselhubert3915
    @marcgriselhubert3915 10 หลายเดือนก่อน

    When EB = 2.sqrt(5) is known we can finish using in the right triangle ADB the formula EA . EB = ED^2,
    So: (2R - 2.sqrt(5)). (2.sqrt(5)) = (4 +4)^2, or 4.sqrt(5).R - 20 = 64, or R = (64 + 20) / 4. sqrt(5), or R = 21 / sqrt(5) = (21. sqrt(5)) /5

  • @MrPaulc222
    @MrPaulc222 3 หลายเดือนก่อน

    Imagining a full circle and intersecting chords, 3x^2 = 48.
    x^2 = 16. x = 4
    EB = sqrt(20)
    Another bout of intersecting chords gives 8*8 = (sqrt(20)(2r - sqrt(20)
    64 = 2r*sqrt(20) - 20
    84 = 2r*sqrt(20)
    21 = r*sqrt(5)
    r = 21/sqrt(5)
    Rationalise to r = (21*sqrt(5))/5
    Decimal approx: 9.39

  • @phungpham1725
    @phungpham1725 10 หลายเดือนก่อน +1

    Thank you so much for the tricky problem!
    I solved it almost the same as you , except for the last part. Because the triangle ADB is a right one so we can have: sq ED=AExEB or we can use chord theorem again.

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      You are very welcome!
      Thanks ❤️

  • @jpopelish
    @jpopelish 10 หลายเดือนก่อน

    Could you just apply the chord product rule a second time, once you had found ED, to solve for EB*AE=ED*its symmetrical other side? AE*EB=8*8. Then R = (AE+EB)/2.

  • @wes9627
    @wes9627 10 หลายเดือนก่อน

    Use law of intersecting chords: DF*3DF=6*8=48 yields DF=√16=4
    Evaluate leg of right triangle: EB=√(6^2-4^2)=2√5
    Use law of intersecting chords: EB*AE=(2DF)(2DF) yields AE=4*4^2/(2√5)=32√5/5
    Radius R=(AE+EB)/2=(32√5/5+10√5/5)/2=21√5/5 units

  • @pralhadraochavan5179
    @pralhadraochavan5179 10 หลายเดือนก่อน +1

    Good night sir

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Good night, dear ❤️

  • @nomad7966
    @nomad7966 10 หลายเดือนก่อน

    Мой ответ : (16/V5)+V5 ~~9.39
    *V - sqrt

  • @giuseppemalaguti435
    @giuseppemalaguti435 10 หลายเดือนก่อน

    Posto a =FE,α=CBO.,.le relazioni usate sono a=6sinα,rcosα=7...r^2=(2a)^2+(r-6cosα)^2...facendo le opportune sostituzioni risulta r^2=49*9/5

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Thanks ❤️

  • @misterenter-iz7rz
    @misterenter-iz7rz 10 หลายเดือนก่อน

    😅 a real challenge puzzle. 3a^2=6 8, a=4, EB=2sqrt(5), r^2=64+(r-2sqrt(5))^2=84-4sqrt(5)r+r^2, 84=4sqrt(5)r, r=21/sqrt(5)=21/5 sqrt(5).😊

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      Excellent!
      Thanks ❤️

  • @prossvay8744
    @prossvay8744 10 หลายเดือนก่อน

    R=21√5/5 units.❤❤❤thanks

    • @PreMath
      @PreMath  10 หลายเดือนก่อน

      Excellent!
      You are very welcome!
      Thanks ❤️

  • @murdock5537
    @murdock5537 10 หลายเดือนก่อน

    DE = EF + DF = a + a → DK = DE + EK = 2a + 2a; BC = BF + CF = 6 + 8 = 14 = BT + CT = 7 + 7 → sin⁡(BTO) = 1
    8(6) = a(3a) → a = 4 → sin⁡(θ) = a/6 = 2/3 → cos⁡(θ) = √(1 - sin^2(θ)) = √5/3 = 7/r → r = 21√5/5
    or: ∆ BTO = ∆ TCO → sin⁡(BTO) = 1; BT = CT = 7; TBO = TCO = θ → TOB = COT = δ → sin⁡(θ) = cos⁡(δ) = 2/3 →
    cos⁡(θ) = sin⁡(δ) = √5/3 → cos⁡(2δ) = 1 - 2sin^2(δ) = -1/9 → ∆ BCO → 14(14) = 2r^2(1 - cos⁡(2δ)) → r = 21√5/5
    or fast lane: sin⁡(θ) = 2/3 → cos⁡(θ) = √5/3 = 14/2r → r = 21√5/5

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      Thanks ❤️

  • @wackojacko3962
    @wackojacko3962 10 หลายเดือนก่อน

    @ 1:30 , Divergent Thinking is critical too the success of analyzing and evaluating this problem. If only Schrodinger's Cat had the same creative imagination. Meow! 🙂

    • @PreMath
      @PreMath  10 หลายเดือนก่อน +1

      Excellent!
      Thanks ❤️