Find Square's Area Using Circles

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 21

  • @kristeljadebrandino8245
    @kristeljadebrandino8245 21 วันที่ผ่านมา +14

    I never thought I would spend 3 minutes learning how to workout the area of the square from two circles. I loved the randomness of youtube sometimes!

    • @realnathangrieve
      @realnathangrieve  21 วันที่ผ่านมา +2

      Glad you liked it!

    • @velstadtvonausterlitz2338
      @velstadtvonausterlitz2338 21 วันที่ผ่านมา

      You know, I think this is why measurement devices were invented instead of using complicated mathematics.

    • @Griste2006
      @Griste2006 20 วันที่ผ่านมา

      Same here 😂

  • @notatallheng
    @notatallheng 21 วันที่ผ่านมา +9

    It's actually easier if you substitute y = (10 - x/2) into the first equation (y^2 = 20x - x^2). No mucking about with roots if you do it that way.

    • @whodoesntcare
      @whodoesntcare 19 วันที่ผ่านมา

      That is very clever

  • @tofuking
    @tofuking 20 วันที่ผ่านมา +1

    By symmetry the green line is just 10-x/2, and the quadratic is way easier to solve from there

  • @hallo-g1r
    @hallo-g1r 14 วันที่ผ่านมา

    You can find y directly because it is ((20-x)/2) you can just put that into the Pythagorean theorem

  • @miniguner7856
    @miniguner7856 19 วันที่ผ่านมา

    2:13 before squaring both sides you must demand the right side to be greater or equal to 0
    2:49 try to find the x using Viet's theorem or something else before using Discriminant to avoid making minor mistakes

  • @Mr.Looper_
    @Mr.Looper_ 20 วันที่ผ่านมา +2

    Funny that when using calculus to solve this you get that the area of the square is equal to (20-2(10sin(pi/4)))^2 which equals (20-2(10sqrt(2)/2))^2 or (20-2(5sqrt(2))^2 which equals 34.3146

    • @wetguts
      @wetguts 19 วันที่ผ่านมา

      why would you use calculus?

  • @addymant
    @addymant 21 วันที่ผ่านมา

    Oh that's clever, I did it a little different. I defined the right circle to be (x-10)^2+(y-10)^2=10^2, so a circle with radius 10 that touches the x- and y-axes, so the square will be divided evenly in two by the y-axis. The top right corner of the square would then be at point (s/2,s), where s is the side length, and would have to sit on the line y=2x. I substituted 2x for y and solved to get (x-2)(x-10)=0. Obviously the 10 solution was nonsense so x=2, and the side length is 4 meters.

  • @warrenkenzie3873
    @warrenkenzie3873 21 วันที่ผ่านมา

    really fun problem!

  • @pathfinder2198
    @pathfinder2198 21 วันที่ผ่านมา

    So. I looked at the preview and said to myself it's 100% gonna be 4, skipped through whole video, it's 4. Math is nice but isn't always needed with a good eye, I guess.

  • @AyushTH
    @AyushTH 15 วันที่ผ่านมา

    I did it in my head and got 0....
    (10-x)^2 + (10-0.5x)^2 = 100

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 17 วันที่ผ่านมา

    (10)^2 (10)^2={100+100}=200 10^20 10^2^10 2^5^2^2^5 1^1^12^1 2^1 (x ➖ 2x+1) .

  • @trippyadvisor1146
    @trippyadvisor1146 21 วันที่ผ่านมา +1

    hey man, i found an easier solution, I just uploaded it so you can see it's a LOT easier

    • @trippyadvisor1146
      @trippyadvisor1146 21 วันที่ผ่านมา +1

      the solution:
      th-cam.com/video/FyWjh4R3QPg/w-d-xo.htmlsi=MSK3MSluNnO1gaUU

    • @trippyadvisor1146
      @trippyadvisor1146 21 วันที่ผ่านมา

      th-cam.com/video/FyWjh4R3QPg/w-d-xo.htmlsi=MSK3MSluNnO1gaUU

    • @realnathangrieve
      @realnathangrieve  21 วันที่ผ่านมา +1

      Nice one! I'll check it out