Inverse Function Problem

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 พ.ย. 2024

ความคิดเห็น • 31

  • @deanflash112
    @deanflash112 11 หลายเดือนก่อน +70

    Bruh that chalking tapping while doing math is on another level.

    • @billy.7113
      @billy.7113 11 หลายเดือนก่อน +6

      He said he has been doing that for 25 years. 😊

  • @bruv4266
    @bruv4266 11 หลายเดือนก่อน +30

    I love it when you look at the camera instead of looking what you wrote at the end

  • @luisclementeortegasegovia8603
    @luisclementeortegasegovia8603 11 หลายเดือนก่อน +8

    Nice way of doing it. It's always necessary to remember algoritms! 👍

  • @davidseed2939
    @davidseed2939 10 หลายเดือนก่อน +9

    you should really state the your method depends on the invertability of f otherwise we could not be sure that f(x)=f(y) implies x=y

    • @mrhtutoring
      @mrhtutoring  10 หลายเดือนก่อน +7

      I have a regular video explaining that.
      It's not possible to explain everything in TH-cam shorts.

  • @Phymacss
    @Phymacss 11 หลายเดือนก่อน +7

    awesome!

  • @wahm1
    @wahm1 11 หลายเดือนก่อน +3

    only works with one to one functions otherwise we are not sure if there is only one unique x whose output is 7

  • @shadmanbinalamshimanto2917
    @shadmanbinalamshimanto2917 10 หลายเดือนก่อน +1

    I am not even understanding what he's saying but i am understanding his doing maths 😂

  • @Gbhmagic
    @Gbhmagic 11 หลายเดือนก่อน +1

    i used to do these in my sleep.. But not using it in my field makes one forget all this easy stuff. Now i know why my dad struggled with the math i did.. lol he was a Masters level engineer.

  • @Alien-Networking
    @Alien-Networking 10 หลายเดือนก่อน

    You’re awesome ❤

  • @ruchitripathi4928
    @ruchitripathi4928 11 หลายเดือนก่อน +1

    How can we set them equal as many functions have same value for different values of x can someone explain pls or this is a special case

    • @Mycroft616
      @Mycroft616 11 หลายเดือนก่อน +3

      The notation signifies the inverse of function f is also a function. Since f^-1(7) outputs 3, the definition of a function means _only_ f(3) can output 7.

    • @carultch
      @carultch 11 หลายเดือนก่อน +3

      Even if it has a multivalued inverse, this method still produces at least one valid value of t.
      To conclude that it is the only valid value of t, you'd have to also know that f(x) is a 1-to-1 function.

  • @hansapandya3842
    @hansapandya3842 11 หลายเดือนก่อน +2

    sir
    on the third step you can directly do the tp process
    I mean just simply multiply the denominator to the numerator on the other hand side
    why didn't you do so?

    • @luisclementeortegasegovia8603
      @luisclementeortegasegovia8603 11 หลายเดือนก่อน +1

      Because in some fractions you have two denominators and it's better to get use with that method. 👍

    • @hansapandya3842
      @hansapandya3842 11 หลายเดือนก่อน +2

      @@luisclementeortegasegovia8603 okay that's cool but
      The method which is I am discussing is also applicable for the problem you discussed......
      Just for an example
      1 + 2t/ (3 + t)(2 + 7t) = 5
      1st method
      1 + 2t = 5 (3 + t)(2 + 7t)
      1 + 2t = 5 (6 + 21t + 2t + 7t²)
      1 + 2t = 30 + (5 x 23t) + 35t²
      1 + 2t = 30 + 115t + 35t²
      .....continued
      2nd method
      1 + 2t/ (3 + t)(2 + 7t) = 5
      1 + 2t/ (6 + 21t + 2t + 7t²) = 5
      1 + 2t = 5 (6 + 21t + 2t + 7t²)
      1 + 2t = 30 + (5 x 23t) + 35t²
      1 + 2t = 30 + 115t + 35t²
      .....continued
      we casually use the 2nd method.......

  • @speakingsarcasm9014
    @speakingsarcasm9014 10 หลายเดือนก่อน +1

    Is it assumed that f is one-one?

    • @carultch
      @carultch 10 หลายเดือนก่อน

      Yes. It is required that the f(x) is a one-to-one function for this reasoning to be valid.

    • @bambouejfr9263
      @bambouejfr9263 10 หลายเดือนก่อน

      If a function has an inverse, it means that they are bijective (each y has one and only one x)

  • @spicytuna08
    @spicytuna08 11 หลายเดือนก่อน +1

    can u elaborate how inverse of a function work?

    • @Mycroft616
      @Mycroft616 11 หลายเดือนก่อน +1

      Substitute y for f(x), swap x and y, then solve for y. For example
      f(x) = x^2 - 4x + 4
      y = x^2 - 4x + 2
      x = (y - 2)^2
      y - 2 = x^(1/2)
      y = 2 + x^(1/2)
      You can also check since f[f^-1(x)] = x = f^-1[f(x)].
      In the case of my example, however, we need to be careful since we have even powers and even roots. If you check the negative x values, you see a problem with the inverse that means an unrestricted domain excludes the inverse from being a function. In order to be all encompassing, we would actually need two inverse functions with restricted domains and a sign change.

  • @minhnguyenhong1023
    @minhnguyenhong1023 10 หลายเดือนก่อน +1

    I don’t think you find enough solution for the problem, because there might be different values of a and b such that f(a) = f(b)

  • @user-xt9ri1li7h
    @user-xt9ri1li7h 10 หลายเดือนก่อน

    Lol

  • @SampsonNekuJunior
    @SampsonNekuJunior 10 หลายเดือนก่อน +2

    Please the answer is just -4

  • @anestismoutafidis4575
    @anestismoutafidis4575 10 หลายเดือนก่อน

    => 1/f(7)=3 f(7)=1/3 f[(1-2t)/(1+2t)]=f(7) f[(1-2i)/(1+2i)]=-i/3i=-1/3; f[(1-2•1)/(1+2•1)]=-1/3 t1=| i |; t2= |1|

  • @India__01
    @India__01 10 หลายเดือนก่อน

    What is f

    • @carultch
      @carultch 10 หลายเดือนก่อน

      The name of an unspecified function. It is assumed for lack of other information, that f(x) is a one-to-one function, with only a single-valued inverse.

  • @joelwillis2043
    @joelwillis2043 11 หลายเดือนก่อน

    imagine assuming the inverse exists without proving it

    • @bambouejfr9263
      @bambouejfr9263 10 หลายเดือนก่อน

      Imagine assuming that f((1-2t)/(1+2t)) is even defined. That's just the data given in the exercise, they are not gonna give you false information.

    • @joelwillis2043
      @joelwillis2043 10 หลายเดือนก่อน

      @@bambouejfr9263 you get 0 marks for making any such assumption of existence. Not sure what brain dead take you are on.