Valid and Invalid Arguments in Logic using truth tables part 1

แชร์
ฝัง
  • เผยแพร่เมื่อ 8 ม.ค. 2025

ความคิดเห็น • 16

  • @AlexanderyFlomo
    @AlexanderyFlomo 3 ปีที่แล้ว +4

    awesome explanation! I have been lost for three days trying to understanding the truth table. These videos gave me a clear idea of validating deductive arguments using the Truth table.

  • @nimmanaamarasinghe2023
    @nimmanaamarasinghe2023 2 ปีที่แล้ว +1

    theruna ayye. hodata explain karala dunna. jaya wewa.

  • @narayanmorajkar1069
    @narayanmorajkar1069 3 ปีที่แล้ว +1

    Your explaination is simple and easy to understand

  • @ChandniSingh-r2g
    @ChandniSingh-r2g ปีที่แล้ว +1

    Good video ❤ love from blackhole

  • @sjsjsjsjs8655
    @sjsjsjsjs8655 3 ปีที่แล้ว +2

    Dito po ako nakakuha ng examples ng valid salamat po

  • @watsonluchisoyi8305
    @watsonluchisoyi8305 2 ปีที่แล้ว

    These is wonderful and thanks allot.

  • @unruly_ronin
    @unruly_ronin 6 หลายเดือนก่อน

    Thanks so much for this brother

  • @danidannyabrahimernestsesa48
    @danidannyabrahimernestsesa48 3 ปีที่แล้ว +1

    Can you please solve for me this argument ???

  • @kojocoverfhoto2532
    @kojocoverfhoto2532 5 หลายเดือนก่อน

    Very very confusing how about using Antecedent and consequent and Talking about Modus tollens denying the consequent

  • @gaishinlung8835
    @gaishinlung8835 2 ปีที่แล้ว

    What is elementary valid argument form? Prove the validity of the following? (a) p>q .....p.... therefore q (b) p>q....q>r..... therefore p>r (c) P.... therefore P v q.
    Plis help🙏

  • @danieldereje8503
    @danieldereje8503 3 ปีที่แล้ว +1

    Difine the invalid and valid argument ?

    • @levskt6552
      @levskt6552  3 ปีที่แล้ว +2

      An argument is valid if the conclusion is true whenever all the premises are assumed to be true. An argument is invalid if its is not a valid argument.

  • @danidannyabrahimernestsesa48
    @danidannyabrahimernestsesa48 3 ปีที่แล้ว +2

    A. Unseen question
    B. Reduce the passage below to the simplest symbolic logic
    Premise 1: The girls who have reached puberty will be taken into the bondo bush or they will be stocked by an enactment of parliament.
    Premise 2: The girls have attained the prescribe stage and the parliamentary enactment will not stop them.
    Conclusion: No conclusion give
    Please i am in need of argument solution please help

    • @levskt6552
      @levskt6552  3 ปีที่แล้ว +1

      The conclusion is "The girls will be taken into the bondo bush".

  • @Abs272b
    @Abs272b 10 หลายเดือนก่อน

    great

  • @yms2760
    @yms2760 ปีที่แล้ว

    ✨️