Group theory 12: Cauchy's theorem

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 พ.ย. 2024

ความคิดเห็น • 9

  • @3Max
    @3Max 6 หลายเดือนก่อน +1

    This is such a fun approach to group theory -- great balance between theory and examples.

  • @dibeos
    @dibeos 3 ปีที่แล้ว +1

    I really do not understand in the beginning of the proof when you say: “if p divides the order of any smaller group…”. Smaller than what? G has order smaller than what? Than p it cannot be because p cannot divide a number smaller than itself… I’m confused about this phrase. Could you please clarify?

    • @ducthangnguyen0108
      @ducthangnguyen0108 3 ปีที่แล้ว

      Since he is using induction on the order of n, he must assume that the statement holds true for groups of order less than n.

  • @robshaw2639
    @robshaw2639 2 ปีที่แล้ว

    why do we know that we can pick this element q of some prime order?

    • @98danielray
      @98danielray 2 ปีที่แล้ว +1

      if you suppose an element a has composite order qc then a^c has order q.

    • @robshaw2639
      @robshaw2639 2 ปีที่แล้ว

      @@98danielray thanx.

  • @vladislavbalakirev5826
    @vladislavbalakirev5826 3 ปีที่แล้ว +1

    You never explicitly state the base of induction...

    • @ai314159
      @ai314159 3 ปีที่แล้ว +3

      I noticed that too. The smallest group whose order is divisible by p has order p and is therefore cyclic, so by definition has an element of order p.

    • @kaa1el960
      @kaa1el960 ปีที่แล้ว +1

      complete induction does not need a base case.😀