Galois theory: Examples of Galois extensions

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 16

  • @brunodular
    @brunodular 4 ปีที่แล้ว +8

    Thank you so much for all these videos!!!

  • @Brien831
    @Brien831 3 ปีที่แล้ว +9

    I am the 1337th viewer and the 69th like. I am so gonna ace my algebra exams haha.

    • @Brien831
      @Brien831 3 ปีที่แล้ว +18

      I failed

    • @vs-cw1wc
      @vs-cw1wc 3 ปีที่แล้ว +10

      @@Brien831 don't give up bro

    • @realwermos
      @realwermos 6 หลายเดือนก่อน

      I feel you, I'm on my way to the same fate 😢😭

  • @vs-cw1wc
    @vs-cw1wc 3 ปีที่แล้ว +3

    Is "lattice" a mathematical terminology that can be precisely defined?

    • @nnaammuuss
      @nnaammuuss 3 ปีที่แล้ว +3

      Yes. This case of lattice refers to a partially ordered set.. with exactly what properties I don't remember.. they should definitely have joins and meets (a join of two elements a, b is the _maximum_ element (which is hypothesized to exist) of the subset { c : c ≤ a, c ≤ b }-that's the _intersection_ in case of a powerset; the meet is the dual concept) . Some properties such as associativity, commutativity, idempotence of joins and meets I think just follow. What doesn't follow in general is the distributivity w.r.t. each other and isn't hypothesized. Thus, the main theorem of galois theory needs a little more work showing that in the correspondence, these operations (dualized) correspond too-but that's not hard.
      There's of course another notion which also goes by the name of lattice: viz. a finitely generated Z-submodule (additive subgroup) of some R^n (R meaning the reals). This is not the one he was talking about, but this too shows up in these contexts, eg. when you're trying to compute a galois group (starting from an equation), dealing with factorization of rational polynomials, and in particular, the LLL algorithm. 👍

    • @nnaammuuss
      @nnaammuuss 3 ปีที่แล้ว +1

      Sorry, if two lattices (in the first sense) are shown to be isomorphic as posets, the join and meet operations obviously correspond. No extra work required.

    • @Rupadarshi-Ray
      @Rupadarshi-Ray 2 หลายเดือนก่อน

      yes

  • @benhsu42
    @benhsu42 2 ปีที่แล้ว +1

    11 minute mark: why is F8 not a subfield of F16?

    • @jacobfertleman1980
      @jacobfertleman1980 2 ปีที่แล้ว +1

      Didnu figure it out?

    • @benhsu42
      @benhsu42 2 ปีที่แล้ว

      @@jacobfertleman1980 not yet

    • @abderrahmaneprofmaths659
      @abderrahmaneprofmaths659 2 ปีที่แล้ว +3

      If K is a subfield of L, then L is a vector space over K.
      In the mentioned example, any (finite dimensional) vector space over F_8 must have cardinality 2^{3k}.
      In general F_p^{m} is a subfield of F_p^{n} iff m|n

    • @benhsu42
      @benhsu42 2 ปีที่แล้ว

      @@abderrahmaneprofmaths659 Thank you very much!

  • @jacobsmith7285
    @jacobsmith7285 4 ปีที่แล้ว +2

    I have no idea what any of this means but I wanna know more!

  • @migarsormrapophis2755
    @migarsormrapophis2755 4 ปีที่แล้ว +1

    ye