can you solve this Berkeley Math Tournament quadratic problem?

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 24

  • @randomjin9392
    @randomjin9392 13 วันที่ผ่านมา +28

    It's not that xˣ is strictly increasing (because on (0, 1/e) it's decreasing), it's just that it's increasing for where we care about, i.e. positive integer N.

  • @joseluishablutzelaceijas928
    @joseluishablutzelaceijas928 13 วันที่ผ่านมา +3

    That observation with the 2^160 = 32^32 was really unexpected and nice... I argued by taking the base 2 logarithm of both sides of 2^(20/n) >= 2*sqrt(n) to obtain 20/n >= 1+(log_{2}(n))/2. As the LHS is decreasing and the RHS increasing, I simply needed to find the smallest n s.t. the RHS is not smaller than the LHS anymore, which was easy to find as, given the many 2's, it is natural to try powers of 2. Thanks for the problem and its solution.

  • @henrymarkson3758
    @henrymarkson3758 13 วันที่ผ่านมา +3

    This channel is the home of smart maths.

    • @drpeyam
      @drpeyam  13 วันที่ผ่านมา +1

      Agreeeed 😊

  • @WahranRai
    @WahranRai 12 วันที่ผ่านมา +3

    0:53 Why did you consider +- .
    Just raise both sides to power 1/n ---> (((x^2 + n)/x)^n)^(1/n) = (2^20)^(1/n) --->
    (x^2 + n)/x = 2^(20/n)

  • @szewing9038
    @szewing9038 13 วันที่ผ่านมา +2

    Thanks Dr.Peyam. I really enjoyed it.

    • @drpeyam
      @drpeyam  13 วันที่ผ่านมา +1

      You’re so welcome :)

  • @jackmeyergarvey
    @jackmeyergarvey 13 วันที่ผ่านมา +8

    Didn't expect Dr Peyam to say "Oh yeah, she ate." Great video!

  • @Malekbih5918
    @Malekbih5918 11 วันที่ผ่านมา +1

    Merci infiniment.. Bonne continuation.. tu es génial !!!

    • @drpeyam
      @drpeyam  10 วันที่ผ่านมา +2

      De rien :)

  • @Tletna
    @Tletna 11 วันที่ผ่านมา

    Maybe I just missed it earlier in the video but why did you stop at N = 1 and not do N = 0 or negative values when summing all N's < or = to 8?? Maybe I'll just watch it again later. Also, you knew to manipulate the numbers so that it could more easily be solved because it is a known Berkeley math tournament problem. How would we know to look for this in other similar problems?

  • @slavinojunepri7648
    @slavinojunepri7648 13 วันที่ผ่านมา +2

    Very cool solution

  • @harikishan5690
    @harikishan5690 12 วันที่ผ่านมา

    wow those clever transformations at the end🥳nice

  • @DanGRV
    @DanGRV 12 วันที่ผ่านมา +1

    I used a different approach:
    (x+n/x)^n has a minimum at x=sqrt(n)
    this means that 2^20 >= (2sqrt(n))^n
    after squaring and some other algebraic steps
    2^(40-2n) >= n^n
    setting n=2^k, comparing exponents and after some other steps
    40 >= (k+2) 2^k
    the right hand side grows really with k, only had to test k=1, 2 and 3 to find that n=2^3=8 is the last n which allows solutions

  • @jeanfredericferte1128
    @jeanfredericferte1128 12 วันที่ผ่านมา

    nice one ! thank you (also, great use of the magical clicking fingers !)

  • @ronbannon
    @ronbannon 12 วันที่ผ่านมา +1

    You should have stated before doing the problem that n is a natural number. Although n is often used to represent natural numbers, it could also mean integers. However, n could also represent any class of numbers, and there's no reason to assume such a restriction unless stated.

    • @redpepper74
      @redpepper74 12 วันที่ผ่านมา +3

      He does say it at the very start, but it’s understandably easy to miss

  • @utilizator1701
    @utilizator1701 13 วันที่ผ่านมา

    Even though my final answer is the same, my calculation says that the grade 2 equation of X has real solutions if n is less or equal to a number n0 between 8 and 9 such that 2^(40/n0)-4*n0 = 0.

  • @edufer111
    @edufer111 11 วันที่ผ่านมา

    I did it using base 2 logarithms

  • @sagarmajumder7806
    @sagarmajumder7806 13 วันที่ผ่านมา +2

    Thanks sir.
    Completely understand 😊😊😊

    • @drpeyam
      @drpeyam  13 วันที่ผ่านมา

      Most welcome!!

  • @jcfgykjtdk
    @jcfgykjtdk 12 วันที่ผ่านมา

    Nice

  • @Rifat-jz6ge
    @Rifat-jz6ge 13 วันที่ผ่านมา +2

    ,❤

  • @nicecube2798
    @nicecube2798 12 วันที่ผ่านมา

    These videos make me feel so stupid