Physics 34 Fluid Dynamics (17 of 24) Poisseuille's Law and the Discharge Rate

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 ม.ค. 2025

ความคิดเห็น • 57

  • @tomatrix7525
    @tomatrix7525 4 ปีที่แล้ว +3

    This is very very very very very very very good, forgive my repition but it was necessary. This is so understandable and relevant

  • @cedricmmangisa385
    @cedricmmangisa385 ปีที่แล้ว +1

    I've been studying this and i couldn't make sense of it. Thank you very much; You're a lifesaver 🙏

    • @MichelvanBiezen
      @MichelvanBiezen  ปีที่แล้ว +2

      You are welcome. Glad you found our videos.

  • @fatilyuz4011
    @fatilyuz4011 4 ปีที่แล้ว

    thank you ı came here as a medical student. seing Poisseuille's Law as a mold wasnt't enough for me
    you made me understand blood flow in relevance with vessel diameter with just 2 videos :)

    • @MichelvanBiezen
      @MichelvanBiezen  4 ปีที่แล้ว +1

      Glad to be of help. Keep working hard in medical school, you are almost there.

  • @sneakyrabbits
    @sneakyrabbits 9 ปีที่แล้ว +6

    What happened to lecture 18 of 25?
    Your videos are great btw

    • @MichelvanBiezen
      @MichelvanBiezen  9 ปีที่แล้ว +5

      +sneakyrabbits
      I still have to finish the playlist.

  • @andrewjustin256
    @andrewjustin256 5 หลายเดือนก่อน

    2:03 Mr. Michel, why is dA = 2#r dr and not simply dA = 2#dr? That's why I thought it would be!

  • @jorenpetrus1449
    @jorenpetrus1449 3 ปีที่แล้ว +1

    Hi Michel, This is very good material. Do you have a video where you calculate pressure drops in a pipe? Where you calculate Reynolds number, look up/calculate friction values of the inner surface of the pipe, ...?

    • @MichelvanBiezen
      @MichelvanBiezen  3 ปีที่แล้ว +1

      Not yet. Our videos on fluid dynamics are limited. We plan to expand those videos to include the topics you mentioned.

  • @manideepikamallavarapu7372
    @manideepikamallavarapu7372 7 ปีที่แล้ว +2

    Thank you so much :')
    I wish I was your student! Physics would have been so much interesting.

  • @oghenemoses8839
    @oghenemoses8839 ปีที่แล้ว +1

    Sir, thanks for all you do for us we really appreciate it.
    Sir , you didn't introduce a constant after the integration of dQ.(D discharge flow rate).

    • @MichelvanBiezen
      @MichelvanBiezen  ปีที่แล้ว +2

      There are no constants introduced when we have a definite integral. (An integral with limits to be evaluated).

  • @jorgemercent2995
    @jorgemercent2995 5 ปีที่แล้ว

    Dear Prof van Biezen, @2:00, could you please explain why dA is 2Pie r dr? Shouldn't dA just be 2Pie dr?

    • @MichelvanBiezen
      @MichelvanBiezen  5 ปีที่แล้ว +1

      If you cut the circular ring (dA) and stretch it lengthwise you end up with a thin rectangular strip. The area of the rectangular strip = length x width = (2 x pi x r) x (dr)

    • @jorgemercent2995
      @jorgemercent2995 5 ปีที่แล้ว +1

      @@MichelvanBiezen thank you Prof van Biezen very much for your reply, you are the best!

  • @prof.dr.sadiqs.muhsunal_ji6353
    @prof.dr.sadiqs.muhsunal_ji6353 หลายเดือนก่อน +1

    Dear sir
    Does this equation exceptable for Turbulent flow?

    • @MichelvanBiezen
      @MichelvanBiezen  หลายเดือนก่อน +1

      When the flow becomes turbulent, this method no longer works.

  • @aquienpuedaimportar3028
    @aquienpuedaimportar3028 6 ปีที่แล้ว +2

    If Q = Av, why does dQ = vdA and not dvdA?

    • @MichelvanBiezen
      @MichelvanBiezen  6 ปีที่แล้ว +1

      It could. It depends on what you are integrating or the variable over which you are integrating. In this case the velocity changes as a function of r and thus you are integrating over dr which can be defined via dA.

    • @aquienpuedaimportar3028
      @aquienpuedaimportar3028 6 ปีที่แล้ว +1

      OK, thanks very much.
      Also, why does A = 2.pi.r and not 2.pi.r.L? Is the discharge rate independent of the length of the capillary?

    • @chandramoulisarkar2935
      @chandramoulisarkar2935 6 ปีที่แล้ว +1

      A quien pueda importar no the discharge rate does not depend upon the length it only depends upon the cross section the wider the cross section slower the discharge velocity and narrow the tube faster the discharge velocity. Length does not affect the velocity of discharge here as it is already considered under v: rate of flow of water . So Q=v.A

  • @noyesharrigan6217
    @noyesharrigan6217 9 ปีที่แล้ว +1

    Great videos! I'm using these to prepare for my Hydraulics class.
    One question: If we're assuming p1 > p2, shouldn't the 'change in pressure' term be (p1 - p2), making it and the discharge rate positive?

    • @MichelvanBiezen
      @MichelvanBiezen  9 ปีที่แล้ว +3

      Noyes Harrigan
      I wouldn't get hung up on the sign. I always encourage understanding that the flow direction will be from high pressure to low pressure.

  • @Trishaanne_
    @Trishaanne_ 7 ปีที่แล้ว +1

    teaches very well. thumbs up and God Bless

  • @zouaidihajar1651
    @zouaidihajar1651 7 ปีที่แล้ว +1

    please when can I find the following videos from 18 to 25 thanks

    • @MichelvanBiezen
      @MichelvanBiezen  7 ปีที่แล้ว +2

      They still need to be made. (A project for the future).

  • @johnbahati2405
    @johnbahati2405 ปีที่แล้ว +1

    Well explained

  • @rjbrewer57
    @rjbrewer57 ปีที่แล้ว +1

    this is what for which I was delving!

    • @MichelvanBiezen
      @MichelvanBiezen  ปีที่แล้ว +1

      Great! Glad you found our videos. 🙂

  • @tesfayohanis2788
    @tesfayohanis2788 ปีที่แล้ว +1

    Thanks teacher

  • @yonasnegusse5294
    @yonasnegusse5294 2 ปีที่แล้ว +1

    Great again.

  • @notSavant
    @notSavant 8 ปีที่แล้ว

    Is there any video where you explain why we can always calculate for a small amount like dA or dV... like in the moment of inertia of a big object?

    • @MichelvanBiezen
      @MichelvanBiezen  8 ปีที่แล้ว +1

      The concept of a dA of dV is simple geometry. It is no difference as the concept of dx which approaches zero in the limit. This is illustrated in the playlist: CALCULUS 1 CH 1 LIMITS & DERIVATIVES th-cam.com/play/PLX2gX-ftPVXVzRDO_yw83HFddu5rfWsOX.html

    • @notSavant
      @notSavant 8 ปีที่แล้ว

      ok, thanks :)

  • @marwansallouta2101
    @marwansallouta2101 3 ปีที่แล้ว +1

    Thank you, very useful. I could not find Fluid Dynamic (18 of 25).

    • @MichelvanBiezen
      @MichelvanBiezen  3 ปีที่แล้ว +1

      You are correct. We couldn't find it either. It may have been skipped by accident. We'll see if we can figure it out.

    • @marwansallouta2101
      @marwansallouta2101 3 ปีที่แล้ว +1

      Highly appreciated, thank you again.

  • @gauravsaimaddipati8356
    @gauravsaimaddipati8356 ปีที่แล้ว +1

    Beautiful

  • @pppppppppianolover6618
    @pppppppppianolover6618 3 ปีที่แล้ว +1

    U r awesome sir

  • @learnallthings3695
    @learnallthings3695 5 ปีที่แล้ว +1

    dQ=vdA why not A dv?

    • @MichelvanBiezen
      @MichelvanBiezen  5 ปีที่แล้ว +2

      In depends on what is changing. Since dV/dt = vA changes as a function of radius, and dA = 2 pi r dr, you want to express dQ as v dA

    • @learnallthings3695
      @learnallthings3695 5 ปีที่แล้ว +1

      @@MichelvanBiezen thank you you give us a great power best regards

  • @pok8070
    @pok8070 8 ปีที่แล้ว

    why you use 2(pi)rdr for dA ?

    • @MichelvanBiezen
      @MichelvanBiezen  8 ปีที่แล้ว +2

      dA is the area of a small ring that has the circumference 2*pi*r and the width dr, thus the area, dA = (2*pi*r) * dr

    • @pok8070
      @pok8070 8 ปีที่แล้ว

      +Michel van Biezen thank you for answer . but i still understand that why dr is width .
      if dr is width that mean you calculate the space surroud the parabola of lamina flow ?
      why don't use width = R-dr ?

    • @justinfoto
      @justinfoto 8 ปีที่แล้ว +1

      why dr is width: imagine a circle being made of a lot of little rings. 2*pi*r*dr is the area of one little ring. when you integrate that from 0 to R, you'll get the area of the entire circle, pi*R^2

  • @Theunreachable777
    @Theunreachable777 4 ปีที่แล้ว +1

    thank you :)

  • @Mantukasi
    @Mantukasi 6 ปีที่แล้ว +2

    Why you are using 2*pi*r*dr instead of 2*pi*r*dr+pi*(dr)^2? The later one is more correct... I think you neglect pi*(dr)^2 part as very small and that lets you solve integral. However I think that it should be mentioned.

    • @MichelvanBiezen
      @MichelvanBiezen  6 ปีที่แล้ว +2

      pi*dr^2 is not part of the integral