What's Behind the Parabola? (

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น •

  • @geometry_manim
    @geometry_manim  ปีที่แล้ว +16

    What facts did you know earlier, and which ones have you learned now?
    Thanks for watching!

    • @The-Martian73
      @The-Martian73 ปีที่แล้ว +2

      The fact that the 4 intersection points of those 2 parabolas lay on same circul amazes me

  • @bayezidx
    @bayezidx ปีที่แล้ว +16

    I was, am, and will always be captivated at the beauty of geometry!
    This one is a great video! Really needed this as after retiring from Math Olympiad, I was having a hard time finding the beauty and fun I once found in mathematics. I'm really grateful to you for making such an amazing video!

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว +2

      Thank you for this story and the kind words!
      I'm glad you appreciated the beauty of these facts

  • @smoother4740
    @smoother4740 ปีที่แล้ว +20

    Great video! this is exactly how I imagined geometry back in highschool, just loved it. And good luck in the exposition!

  • @abid_hihi
    @abid_hihi ปีที่แล้ว +1

    I have never seen geometry be this beautiful... These animations and explanations must have taken so much time and effort
    Thank you so much!!!

  • @francescocorrenti5135
    @francescocorrenti5135 ปีที่แล้ว +2

    Beautiful animations and facts

  • @timurpryadilin8830
    @timurpryadilin8830 ปีที่แล้ว +21

    I start watching and immediately get suspicious, as the music is really familiar. I start listening carefully to the voice and I immediately recognise one of my favourite youtubers! Nice job, Wild, you have a really good accent. I'll be following you on your new channel. Best of luck!

    • @laiton_
      @laiton_ ปีที่แล้ว +3

      whats his other channel?

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว +12

      @@laiton_, it's just local non-english videos. I'll keep working to make english versions here, if SoME3 helps me to get more interested viewers

  • @Cat-yz1tk
    @Cat-yz1tk ปีที่แล้ว +7

    As for 6:10 a projective geometric solution to the problem would be to look at desargue's involution using the four intersection points and the line at infinity, tge two parabolas are tangent to the line at infinity so the two perpendicular tangency points stay in place, since it is a projective involution that has fixed points A and B it will send C to D if and only if the cross ratio of (ABCD)=-1 now the statement that the 4 points are on a circle is equivalent to the statement that the conic section that goes through the 4 points and the point (1,i,0)=I on the line at infinity passes through (i,1,0)=J since all circles pass through these 2 points so if A,B are perpendicular on the line at infinity have the property (ABIJ)=-1 this is easily verifiable since the real rotation of all point on the line at infinity by 90 degrees is a projective involution that sends A to B and fixes I,J so as we showen earlier this means that (ABIJ)=-1 since there exists a projective involution that fixes I J and swaps A B

  • @maixicek
    @maixicek ปีที่แล้ว +3

    Love it when math is basically art. Good video 👍

  • @rocketman1969
    @rocketman1969 ปีที่แล้ว +1

    Presented in a very amazing and resonant way. Thank you!

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว +1

      It's pleasure to see so many kind-hearted comments here!

  • @banduk1804
    @banduk1804 ปีที่แล้ว +2

    Hi, I just started learning manim. Do you have a repository where I could view the code for your video?

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว +2

      Hey! To make more videos, I plan to start Patreon in the future and share useful code snippets there. That's why I can't post them now.
      But I've made a prototype with reflective property: discord.com/channels/581738731934056449/1051722064781901874/1051767835719909417
      Useful code for animations and lessons can be found here: th-cam.com/users/TheoremofBeethovenvideos
      And here are nice tutorials from dev: www.youtube.com/@behackl

    • @banduk1804
      @banduk1804 ปีที่แล้ว +1

      thanks a lot@@geometry_manim

  • @hackermann99
    @hackermann99 ปีที่แล้ว +4

    Is it WildMathing?)

  • @greedskith6612
    @greedskith6612 ปีที่แล้ว +11

    A month Back I thought of making geometry of conic sections treated geometrically but due to my jee preparation it got quite bothersome to manage to make a video (in the way I got started with manim though~), this was super thanks!

  • @NaviaryMusic
    @NaviaryMusic ปีที่แล้ว +5

    Very nice! What editor do you use to create these visuals?

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว +4

      Thank you!
      I used ManimCE to create animations: docs.manim.community/en/stable/
      That's why there is nothing special about montage

    • @NaviaryMusic
      @NaviaryMusic ปีที่แล้ว +1

      @@geometry_manim Thanks! Is it intuitive to learn?

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว +3

      @@NaviaryMusic, Manim is a Python library, so you need to go deeper into programming and OOP and it takes time. But if you like this way to make animations, then it would be fun to study

    • @NaviaryMusic
      @NaviaryMusic ปีที่แล้ว +1

      @@geometry_manim Thanks!

  • @wrog268
    @wrog268 ปีที่แล้ว +10

    Parabola gameplay: solve for x^2-4x+1
    parabola lore:

  • @davethesid8960
    @davethesid8960 ปีที่แล้ว

    Can I ask what animating program you use? Manim perhaps?

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว +1

      Yes, this is ManimCE: www.manim.community

  • @hobby-ish
    @hobby-ish ปีที่แล้ว +1

    My man just hit me over the head with a tour de force of lines and curves

  • @kepka55
    @kepka55 ปีที่แล้ว +1

    *Wild Mathing?*

  • @bayezidx
    @bayezidx ปีที่แล้ว

    LEGENDARY video!!!

  • @The-Martian73
    @The-Martian73 ปีที่แล้ว +1

    This why I love geometry ❤❤❤

  • @mndtr0
    @mndtr0 ปีที่แล้ว +1

    Попався, WildMathing 😎

  • @erikvaros
    @erikvaros ปีที่แล้ว

    This was epic. I just love it.

  • @KrasBadan
    @KrasBadan ปีที่แล้ว +3

    Услышал знакомую мелодию

  • @morejpeg
    @morejpeg 11 หลายเดือนก่อน

    Amazing!

  • @logo2462
    @logo2462 ปีที่แล้ว +1

    At 5:05 it would be useful to put the formula for the discriminant in terms of the elliptic equation coefficients on screen.

  • @Mr.D.C.
    @Mr.D.C. ปีที่แล้ว

    This is mindblowing

  • @logo2462
    @logo2462 ปีที่แล้ว

    Take a look at Fortune’s Algorithm for finding the Voronoi tesselation of a set of points for a practical implementation of some of these ideas.

  • @metacarpo10
    @metacarpo10 ปีที่แล้ว

    Amazing!❤

  • @e-pluszak9419
    @e-pluszak9419 ปีที่แล้ว +1

    6:10 let the first parabola be ay^2 + by + c - x = 0, the second dx^2 + ex + f - y = 0, if those four (x, y) points satisfy both equations they satisfy d(ay^2 + by + c - x) + a(dx^2 + ex + f - y) = 0 which is an equation of a circle as it has no xy term and coefficients for x^2 and y^2 are equal

  • @a_person1226
    @a_person1226 ปีที่แล้ว

    2:17 I was given this definition in school, we had a whole chapter on locus of points

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว +1

      That's great! I'm glad to know that

  • @lazarm.6868
    @lazarm.6868 ปีที่แล้ว

    Gosh, this is so beautiful 😢😭

  • @alexmiguel9294
    @alexmiguel9294 ปีที่แล้ว

    amazing

  • @realcygnus
    @realcygnus ปีที่แล้ว

    Nifty !

  • @dominiquelaurain6427
    @dominiquelaurain6427 ปีที่แล้ว

    @6:00 : you asked about why the concyclicity...be my guest : "two conics intersect in four concyclic points iff their axes are parallel". One proof is given using google to find the Simonic's january 2013 paper "On a problem concerning two conics" ...an easy deduction from Theorem 1.

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว

      Many thanks! To be honest I know how to prove the fact 6:00, but it's always interesting to read something new. That's why I really appreciate your comment!

  • @ofigennoofigennyy
    @ofigennoofigennyy ปีที่แล้ว +1

    Какие-то подозрительно знакомые музыка и голос))

  • @ffp0126
    @ffp0126 ปีที่แล้ว

    Wild math думал, что мы не узнаем легенду, скрывающуюся за таинственным псевдонимом "geometry"

  • @yisahak
    @yisahak ปีที่แล้ว +1

    I like it

  • @paromita_ghosh
    @paromita_ghosh ปีที่แล้ว

    Ellipse??? Wdym its a parabola right

  • @account5223
    @account5223 ปีที่แล้ว +1

    8:18

  • @dmitrych9280
    @dmitrych9280 ปีที่แล้ว

    Wild mathing?😂

  • @NiteshKumar-le2qi
    @NiteshKumar-le2qi ปีที่แล้ว

    These are my text problem visual view

  • @thomasolson2823
    @thomasolson2823 ปีที่แล้ว

    I'm just amazed at how absurd peer review has gotten. They write something that nobody can understand. I take a few minutes to try and figure out what it is they are saying, only to find out it is trivial. Why did this over educated clown waste my time? Then there is you. This whole competition really. You say wonderful stuff and it is all perfectly understandable. The funny thing is, I bet those guys doing peer review would look confused and say your work is not well defined.

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว

      Hey, thanks for sharing this! I would be interested to know what comments people write on my video (even if they are unfair). And in any case, I am very grateful to 3B1B for this competition, because it brought new views and subscribers. A lot of new good videos have appeared on TH-cam, this is very cool!

    • @thomasolson2823
      @thomasolson2823 ปีที่แล้ว

      @@geometry_manim in case there was a misunderstanding, I'll make this very clear. I love your work.

    • @geometry_manim
      @geometry_manim  ปีที่แล้ว

      @@thomasolson2823, I've got it, thank you!

    • @geometry_manim
      @geometry_manim  3 หลายเดือนก่อน

      @@thomasolson2823 , hey! Sorry for the strange question one year after. Do you remember, did you find this video from the SoME website during the competition or did you find it on TH-cam by yourself?