Riemann sum limits ultimate study guide

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ธ.ค. 2024

ความคิดเห็น • 9

  • @klamsy7249
    @klamsy7249 2 ปีที่แล้ว +10

    "It's 2022, don't write Δx just write dx"
    One of my favorites quotes from you

  • @taldoedu7615
    @taldoedu7615 2 ปีที่แล้ว +5

    For 94Q: I think it's integral from 0 to *pi* of sin(x)dx.
    -cos(x)] from 0 to pi -> -cos(pi) - -cos(0) = 1 + 1 = 2
    I think the trick is to divide the inside constant by the outside one(inside and outside the actual functions in the limits), right?

  • @wannabeactuary01
    @wannabeactuary01 หลายเดือนก่อน

    Wow! This is fabulous - thank you.

  • @Simpuls
    @Simpuls 4 หลายเดือนก่อน

    At 95 for example we don't have to start with 0. It is actually easier to start with 1 and go to 4. So x_i = 1 + deltax * i and our integrating function becomes sqrt(x) instead of sqrt(1+x).
    I found that pretty interesting.
    I should have watched on....
    At Q100 we could have done it to and would just have lnx as a function.
    Wow I really like Riemann Summs now.

  • @SuperYoonHo
    @SuperYoonHo 2 ปีที่แล้ว +1

    Thank you!

  • @saharhaimyaccov4977
    @saharhaimyaccov4977 2 ปีที่แล้ว +3

    19:40 . I saw you think iπ =ln(-1) 🤣🤣

  • @frolomaskor
    @frolomaskor 2 ปีที่แล้ว +1

    It will be nice to apply this to *Riemann zeta function* somehow😎

  • @jedraszektv
    @jedraszektv 2 ปีที่แล้ว

    very informative :)

  • @leonardobarrera2816
    @leonardobarrera2816 2 ปีที่แล้ว +2

    I am so sorry, if I didi something wrong
    =(