Simplifying An Algebraic Expression | Two Ways

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ม.ค. 2025

ความคิดเห็น • 20

  • @seanfraser3125
    @seanfraser3125 ปีที่แล้ว +3

    Let S be the value of the second expression; that is, the value we want to find.
    Add 2 times the first equation to the second equation. With some rearranging we have
    1/(1+2x) + 2x/(1+2x) + 1/(1+2y) +
    2y/(1+2y) + 1/(1+2z) + 2z/(1+2z)
    = 2 + S
    Combine like terms:
    (1+2x)/(1+2x) + (1+2y)/(1+2y) + (1+2z)/(1+2z) = 2 + S
    All three terms on the left-hand side are 1, so we have 3 = 2 + S. Thus S = 1.

  • @lifeisajourney4340
    @lifeisajourney4340 ปีที่แล้ว +3

    We can set 1+2x=a or x = (a-1)/2
    1+2y=b or y = (b-1)/2
    1+2z=c or z = (c-1)/2
    substituting x, y, z in the eqn we get
    x/a + y/b + z/c =1
    (a-1)/2a + (b-1)/2b + (c-1)/2c = 1 (Multiply both sides by 2)
    (a-1)/a + (b-1)/b + (c-1)/c = 2
    Now (a-1)/a = 1 - 1/a and so on
    so we get 3 - 1/a - 1/b - 1/c = 2
    and 1 = 1/a +1/b +1/c

  • @thorinpalladino2826
    @thorinpalladino2826 ปีที่แล้ว +1

    1 is obviously an answer. The tricky part is showing that it is the only answer.

  • @falknfurter
    @falknfurter ปีที่แล้ว +2

    Eliminating the fractions in both equations also works nicely: (1) Multiplying the first equation with 2(1+2x)(1+2y)(1+2z) yields 2x(1+2y)(1+2z) + 2y(1+2x)(1+2z) + 2z(1+2x)(1+2y) = 2(1+2x)(1+2y)(2+2z). Although this looks like a monster, it can be tamed after you (2) multiply the second equation with (1+2x)(1+2y)(1+2z). The second equation becomes (1+2y)(1+2z)+(1+2x)(1+2z)+(1+2x)(1+2y) = A(1+2x)(1+2y)(1+2z). (3) Taming these monster expressions is done by adding both equations together. The result is 3(1+2x)(1+2y)(1+2z) = (2+A)(1+2x)(1+2y)(1+2z). The parenthesis with x,y and z cancel out and we have the result 3 = 2+A and finally A=1.

  • @quark67000
    @quark67000 ปีที่แล้ว

    Directly used your second method (before seeing the video), which is very direct and elegant.

  • @mohitg196
    @mohitg196 ปีที่แล้ว +3

    I tried a guess and check method and I putted the values for x,y,z=1 and same for the second equation and I got the 2nd equation equal to 1.

  • @mehulpunia6174
    @mehulpunia6174 ปีที่แล้ว +1

    please try this :
    If aα^2+bα+c=5α^2+3α
    aβ^2+bβ+c=5β^2+3β
    & aγ^2+bγ+c=5γ^2+3γ
    then find the value of a,b,&c

  • @razin4419
    @razin4419 ปีที่แล้ว +2

    3th method:
    I added -1-1-1=-3 to each terms and I found 1 also.

  • @ManjulaMathew-wb3zn
    @ManjulaMathew-wb3zn 11 หลายเดือนก่อน

    Or you can multiply the original equation by 2 then subtract 1 from each fraction. Result would be
    -A=2-3
    A=1

  • @ManjulaMathew-wb3zn
    @ManjulaMathew-wb3zn 11 หลายเดือนก่อน

    Third method here.
    Let A= the required function and subtract each fraction from 1
    3-A=1-1/(2x+1) + 1-1/(2y+1) + 1-1/(2z+[)
    3-A=2(LHS of the first equation =1)
    3-A=2*1
    A=1

  • @gdmathguy
    @gdmathguy ปีที่แล้ว

    I did the second method but I MISCALCULATED IT and it became -0.5 instead as a solution so that's annoying

  • @rakenzarnsworld2
    @rakenzarnsworld2 ปีที่แล้ว

    Let's put x = 1, y = 1, z = 1
    1/3 + 1/3 + 1/3 = 1
    Answer: 1

  • @broytingaravsol
    @broytingaravsol ปีที่แล้ว

    crazy, i've ever been to the answer but skipped

  • @yakupbuyankara5903
    @yakupbuyankara5903 ปีที่แล้ว

    1.

  • @mathswan1607
    @mathswan1607 ปีที่แล้ว

    1

  • @mega_mango
    @mega_mango ปีที่แล้ว

    ez

  • @stevemonkey6666
    @stevemonkey6666 ปีที่แล้ว

    1