90% of Students Struggle with This Tricky Question || Can You Solve It?

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ก.พ. 2025
  • Solution to sqrt(i) + sqrt(-i)

ความคิดเห็น • 22

  • @ConceptbyVishal0
    @ConceptbyVishal0 5 วันที่ผ่านมา

    Hey bro which whiteboard app you use plz tell ❤❤❤❤

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 3 วันที่ผ่านมา +1

    Sqrt[-i]+Sqrt[i]=Sqrt[2] It’s in my head.

  • @anirudhvijayvargiya7394
    @anirudhvijayvargiya7394 หลายเดือนก่อน +6

    But you could have just let the equation equal to x and square both sides...will get same ans

    • @catch-uptutors2691
      @catch-uptutors2691  หลายเดือนก่อน

      You can't let the equation to be real part(x) alone but you could use x+yi

    • @anirudhvijayvargiya7394
      @anirudhvijayvargiya7394 หลายเดือนก่อน +4

      @catch-uptutors2691 ooh don't get confused by taking x as a real part...let x just a complex no ...at last it's just a variable

    • @mbmillermo
      @mbmillermo 29 วันที่ผ่านมา +1

      You beat me to it. I agree with you.

    • @AbdulraheemSalau
      @AbdulraheemSalau 29 วันที่ผ่านมา

      You all should check the comment action and see truly this man is a mathematician

    • @TheGIucose
      @TheGIucose 21 วันที่ผ่านมา

      √i + √-i = x
      √i + √-1√i = x
      √i + i√i = x
      √i(1 + i) = x
      i(1 + 2i - 1) = x^2
      2i^2 = x^2
      -2 = x^2
      √-2 = x
      2i = x
      Why is this wrong?

  • @mbmillermo
    @mbmillermo 29 วันที่ผ่านมา +9

    why not start with x = √i + √-1, square both sides and solve for x? That's a lot faster.

  • @wes9627
    @wes9627 16 วันที่ผ่านมา +3

    ±i=e^{±iπ/2}; √(±i)=√(e^{±iπ/2})=e^{±iπ/4}=cos(±π/4)+i*sin(±π/4)=cos(π/4)±i*sin(π/4)=√2/2±i√2/2.
    Thus, √i+√(-i)=√2/2+i√2/2+√2/2-i√2/2=2(√2/2)=√2

  • @Misha-g3b
    @Misha-g3b 16 วันที่ผ่านมา +2

    ±V2, ±V2i.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 3 วันที่ผ่านมา +1

    Input
    sqrt(-i) + sqrt(i) = sqrt(2)
    Exact result
    (-1)^(1/4) - (-1)^(3/4) = sqrt(2)
    True

  • @MaxGeorgi-m1o
    @MaxGeorgi-m1o 19 วันที่ผ่านมา +1

    I got 4 solutions... let p^2=1=q^2. sqrt(i)+sqrt(-i) = sqrt(i)*(1+p*i) = q*(1+i)/sqrt(2)*(1+p*i) = q*(1-p+i*(1+p))/sqrt(2)

  • @RexxSchneider
    @RexxSchneider วันที่ผ่านมา

    Sorry, but you're wrong.
    We know i = e^(πi/2) so √i = e^(πi/4) = cos(π/4) + i*sin(π/4) = (1 + i)/√2. Similarly -i = e^(-πi/2), so √(-i) = (1 - i)/√2. Hence √i + √(-i) = 2/√2 = √2.
    There is no ± because √ denotes the principal value of the square root which is the value whose complex argument lies in the semi-open interval (-π/2, π/2].

  • @LearnwithDrJaved
    @LearnwithDrJaved 21 วันที่ผ่านมา +1

    There should not be plus minus sign, the plus minus arises when you take a square root, for a signed square root it is always the sign of square root, in this case only positive value.

    • @RexxSchneider
      @RexxSchneider วันที่ผ่านมา +1

      No quite "the positive value" when dealing with complex numbers.
      The principal square root of a complex number is generally taken to be the value whose complex argument lies in the semi-open interval (-π/2, π/2], which makes the complex square root function compatible with the real square root function.

  • @aminimam5118
    @aminimam5118 หลายเดือนก่อน +2

    at 3.5 you made a mistake +1^2 does not equal -1

  • @ffggddss
    @ffggddss 13 วันที่ผ่านมา +3

    Insufficient information.
    When taking the square root of a complex number, z = r e^(iθ), it will be √z = √r e^(iθ/2), and you have to decide on a "cut-line" for the argument (θ).
    There are two common choices: [0, 2π), and (-π, π]. This will not matter for √i = (1 + i)/√2; but will make a difference for √-i.
    Under the first choice, -i has argument, θ = 3π/2, and √-i = (-1 + i)/√2; so √i + √-i = i√2.
    Under the second choice, -i has argument, θ = -π/2, and √-i = (1 - i)/√2; so √i + √-i = √2.
    Fred