Frieze Patterns - Numberphile

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ธ.ค. 2024
  • A surprising link discussed by Professor Sergei Tabachnikov.
    Extra footage at: • Frieze Patterns (extra...
    More links & stuff in full description below ↓↓↓
    Sergei Tabachnikov's homepage at Pennsylvania State University : www.math.psu.ed...
    David Eisenbud discussed MSRI during his Numberphile podcast: • A Proof in the Drawer ...
    Numberphile is supported by the Mathematical Sciences Research Institute (MSRI): bit.ly/MSRINumb...
    We are also supported by Science Sandbox, a Simons Foundation initiative dedicated to engaging everyone with the process of science. www.simonsfoun...
    And support from Math For America - www.mathforame...
    NUMBERPHILE
    Website: www.numberphile...
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberph...
    Videos by Brady Haran
    Animation by Pete McPartlan
    Patreon: / numberphile
    Numberphile T-Shirts: teespring.com/...
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanb...
    Sign up for (occasional) emails: eepurl.com/YdjL9

ความคิดเห็น •

  • @N.I.R.A.T.I.A.S.
    @N.I.R.A.T.I.A.S. 5 ปีที่แล้ว +1169

    1:51 Stuff you hear on Numberphile: "This is a big one - seven."
    Also on Numberphile: *TREE(3)*

    • @numberphile
      @numberphile  5 ปีที่แล้ว +162

      Ha ha. It’s all relative.

    • @proximacentauri8038
      @proximacentauri8038 5 ปีที่แล้ว +26

      TREE(TREE^(TREE(TREE)))

    • @persereikanen6518
      @persereikanen6518 5 ปีที่แล้ว +13

      @@proximacentauri8038 +1

    • @KohuGaly
      @KohuGaly 5 ปีที่แล้ว +12

      @@persereikanen6518 +ω

    • @egilsandnes9637
      @egilsandnes9637 5 ปีที่แล้ว +16

      The number of triangulations of a TREE(3)-gon is a tad bigger than TREE(3) though.

  • @Xormac2
    @Xormac2 5 ปีที่แล้ว +416

    *ACCORDION NOISE INTENSIFIES*

    • @sarysa
      @sarysa 5 ปีที่แล้ว +7

      At first I thought my office printer was malfunctioning...

    • @haskell_cat
      @haskell_cat 5 ปีที่แล้ว +11

      I don't like it. How about a subtle "woosh" sound instead?

    • @alexbartoszek7348
      @alexbartoszek7348 5 ปีที่แล้ว

      I’m now extremely aware of every accordion noise

    • @dan-gy4vu
      @dan-gy4vu 5 ปีที่แล้ว +3

      I beg to differ. It sounds like an old counting machine and I honestly love that.

  • @jonathanbeeson8614
    @jonathanbeeson8614 5 ปีที่แล้ว +264

    It seems that Brady has become over time much more active as an interlocutor in these Numberphile videos, and for me as a mathematical amateur that makes them much better. Thank you !

    • @MoPoppins
      @MoPoppins 5 ปีที่แล้ว +4

      I thoroughly enjoy the Numberphile podcast. Every episode has been riveting, and I’m not even strong in math...just curious about useful things and interesting people that I don’t yet know about.
      Anyone who hasn’t subbed the podcast yet should DEFINITELY check it out. 👍

    • @Triantalex
      @Triantalex ปีที่แล้ว

      ??

  • @SubhashMirasi
    @SubhashMirasi 5 ปีที่แล้ว +345

    A new professor.👏👏

  • @Zwijger
    @Zwijger 5 ปีที่แล้ว +320

    Now I understand why Conway is sick of the game of life, another mathematician talks so highly about him, so he probably has done some brilliant stuff, but most people know him only about that one game.

    • @dominiquelaurain6427
      @dominiquelaurain6427 5 ปีที่แล้ว +48

      Yes, he has done a BIG work..in tiling, arithmetics and so on..that's why he is not so keen to enjoy publicity about a so small part of his lifetime masterwork. I guess Fermat would have not enjoyed to be known only by his famous conjecture.

    • @NatePrawdzik
      @NatePrawdzik 5 ปีที่แล้ว +12

      First world problems.

    • @BlakeMiller
      @BlakeMiller 4 ปีที่แล้ว +2

      Like Tchaikovsky

    • @genericusername4206
      @genericusername4206 4 ปีที่แล้ว +4

      @@BlakeMiller Tchaikovsky is known for a lot of pieces though

    • @PC_Simo
      @PC_Simo 2 ปีที่แล้ว

      It’s like Christopher Lee only being known for his role as Dracula.

  • @johnmulhall5625
    @johnmulhall5625 4 ปีที่แล้ว +15

    Conway will always be one of my favorite mathematicians. When I heard he died from covid, I was truly bummed.

  • @kenhaley4
    @kenhaley4 5 ปีที่แล้ว +59

    Amazing how mathematicians can find correlations between seemingly totally unrelated concepts/phenomena. Nice video!

    • @adamfreed2291
      @adamfreed2291 5 ปีที่แล้ว +7

      Much of Math is figuring out how two seemingly unrelated problems are actually the same problem in a different form.

  • @chrismorong931
    @chrismorong931 5 ปีที่แล้ว +271

    9:52 He's a ventriloquist

    • @mtiman1991
      @mtiman1991 5 ปีที่แล้ว +38

      Plot twist: The Numberphile Mathematicians dont speak english, so the videos are translated

    • @Vaaaaadim
      @Vaaaaadim 5 ปีที่แล้ว +3

      Mind Freak

    • @shmunkyman33
      @shmunkyman33 5 ปีที่แล้ว +14

      I just assumed up until then he had been telepathically communicating the whole time and accidentally forgot to move his lips

    • @JorgetePanete
      @JorgetePanete 5 ปีที่แล้ว +1

      @@mtiman1991 don't*

    • @mtiman1991
      @mtiman1991 5 ปีที่แล้ว +1

      @@JorgetePanete really?

  • @eemikun
    @eemikun 5 ปีที่แล้ว +36

    That feeling when he says "Two famous mathematicians, one of them unfortunately not with us" and the first picture you see is of John Conway D:

    • @cubing7276
      @cubing7276 3 ปีที่แล้ว +4

      He is gone now :(

  • @JuulSimon
    @JuulSimon 5 ปีที่แล้ว +16

    The audio for the brown paper sections was strangely fantastic. Kinda reminded me of playing old DOS games.

    • @sashimanu
      @sashimanu 5 ปีที่แล้ว +1

      DOS games had a much more versatile repertoire of midi notes!

    • @XenophonSoulis
      @XenophonSoulis 5 ปีที่แล้ว +1

      @@sashimanu It was accordion.

  • @Czeckie
    @Czeckie 5 ปีที่แล้ว +153

    No, I want to see the proof!

  • @HalcyonSerenade
    @HalcyonSerenade 5 ปีที่แล้ว +11

    Brilliant choice of clip for John Conway: *"I'm not going to worry anymore! Ever. Again."*

  • @GijsvanDam
    @GijsvanDam 5 ปีที่แล้ว +2

    The enthusiasm of the professor is contagious. Love to see more vids with him.

  • @Abdega
    @Abdega 5 ปีที่แล้ว +308

    All patterns Frieze during the Russian Winters

    • @ericschuster2680
      @ericschuster2680 5 ปีที่แล้ว +1

      lol

    • @BobStein
      @BobStein 5 ปีที่แล้ว +18

      In mother Russia, patterns frieze you.

    • @riftinink
      @riftinink 5 ปีที่แล้ว +2

      @@BobStein I'm living in Russia. Not all regions as cold as you think. For example Krasnodarskiy region, the least temperature hear is about -5 C° (sorry if some of sentences are obscure)

    • @Ri0ee
      @Ri0ee 5 ปีที่แล้ว

      @@riftinink это была шутка

    • @riftinink
      @riftinink 5 ปีที่แล้ว

      @@Ri0ee я уверен, что некоторые думают, что это правда

  • @Djaian2
    @Djaian2 5 ปีที่แล้ว +76

    There is one thing the professor should not have done: he spoiled the fact that he would arrive at a line with only ones. Would have been better if he didn't say it early, and just, after some calculations suddenly produces a line of ones. And then, explain everything like he did.
    He could even have asked Brady: "What do you think, will this explodes to infinity with numbers getting bigger and bigger?"

    • @Lexivor
      @Lexivor 5 ปีที่แล้ว +20

      This would have made it more dramatic, I like your idea.

  • @arirahikkala
    @arirahikkala 5 ปีที่แล้ว +300

    I didn't like the weird electric noises in the animations at first, but they really grew on me by the end of the video. Still not as satisfying as 3blue1brown's clacks, though.

    • @alephnull4044
      @alephnull4044 5 ปีที่แล้ว +54

      The 3B1B nosies are therapeutic.

    • @Kaerulans
      @Kaerulans 5 ปีที่แล้ว +22

      I think those might be sounds of an accordion

    • @Artaresto
      @Artaresto 5 ปีที่แล้ว +5

      They are

    • @burtonlang
      @burtonlang 5 ปีที่แล้ว +27

      I suppose they chose this sound because frieze patterns are arranged sorta like an accordion's buttons.

    • @juchemz
      @juchemz 5 ปีที่แล้ว +18

      I didn't like them, even by the end

  • @spencerarnot
    @spencerarnot 5 ปีที่แล้ว +301

    Not to be confused with Frieza forms. That’s a bit different.

    • @kəanıncupıdo
      @kəanıncupıdo 5 ปีที่แล้ว +21

      DB Math.

    • @spencerarnot
      @spencerarnot 5 ปีที่แล้ว +41

      @Vahseline On the complex Z plane

    • @randomdude9135
      @randomdude9135 5 ปีที่แล้ว +4

      I was gonna make a comment on that 😭

    • @Blutsaugher
      @Blutsaugher 5 ปีที่แล้ว +27

      And this ain't even its final form

    • @WritingMyOwnElegy
      @WritingMyOwnElegy 5 ปีที่แล้ว +2

      are we there yet

  • @KillianDefaoite
    @KillianDefaoite 4 ปีที่แล้ว +10

    4:31
    Unfortunately John Conway is no longer with us either.

  • @Petemackenshaw
    @Petemackenshaw 4 ปีที่แล้ว +10

    "One of whom is sadly not with us anymore." Sigh.. Now neither are.

  • @wmpowell8
    @wmpowell8 2 ปีที่แล้ว +2

    If you use a polygon to generate these patterns, you can connect a line from every vertex to a specific vertex and this creates an amusing pattern

  • @KipIngram
    @KipIngram 7 หลายเดือนก่อน

    I absolutely LOVE that Conway "I'm not going to worry any more, ever again" moment - as far as I'm concerned being able to come to such a point in one's life is the greatest achievement any of us could ask for, and I dearly hope he was successful in following through on that.
    As a counterpoint, I read once that a guy was interviewing Paul Dirac, fairly late in his life, and was stunned when Dirac told him that he really thought of his life's work as a failure. This is the guy who CREATED quantum field theory - our very very best theory of how nature works. And he thought of himself as a failure intellectually. That really makes me quite sad for him. A man like him should have gotten to be content with his accomplishments. Conway found the better path - that's for sure.

  • @justinhoffman5339
    @justinhoffman5339 5 ปีที่แล้ว +1

    Another way to think about the pattern is adding triangles onto the edges of the previous shape. Adding a triangle is effectively the same as inserting a 1 into the cycle, and incrementing the adjacent numbers because you're drawing a point (1) and connecting a line to 2 existing vertices.
    Starting with the simplest case (111), you can insert a 1 in front and get 1212, insert a 1 in the second position and get 2121, insert a 1 second last and get 1212, or insert a 1 at the end at get 2121. You keep the unique cycles (in this case 1212 and 2121) and continue the pattern of inserting 1's into those new cycles.

  • @77Chester77
    @77Chester77 5 ปีที่แล้ว +5

    Satisfying to see that mr Tabachnikov writes the "ones" with a hook on top :-)

  • @Goryllo
    @Goryllo 5 ปีที่แล้ว +2

    The sound effects during the animations are amazing! Great sound design as always, not to mention the interesting subject and the cool graphics...

  • @JCW7100
    @JCW7100 5 ปีที่แล้ว +16

    Love your videos so much! Thanks for the great content! :)

  • @Ecl1psed276
    @Ecl1psed276 5 ปีที่แล้ว +1

    The sound effects in this one are on point :D Props to your editor!

  • @Kaesekuchen002
    @Kaesekuchen002 5 ปีที่แล้ว

    And at 6:20 I was like: "wooooooow". Great video as always. I would like to see more with Professor Tabachnikov.

  • @lfestevao
    @lfestevao 5 ปีที่แล้ว +2

    I really digged this. The Polygon explanation shows why the sequence repeats to the right.
    Now I imagine it like the drawing is in the top of a Cylinder and the numbers are on the side. Then we go down filling the values like in the paper.
    In the end we go back to the trivial 1s row and can start over. This reflects as the Cylinder bending to make both bases meet, like a Thorus.
    This way I was able to see that the pattern repeats it self ALSO there's no orientation, so we can read clockwise OR counterclockwise.
    Going back to the paper examples on the video, this holds up, as it can be read and filled bottom to top.
    Furthermore the sequences repeat BEFORE reaching the trivial 1s. Maybe there is a Klein Bottle interpretation for this, but this was too much for me to imagine without doodling it up.

  • @xenontesla122
    @xenontesla122 5 ปีที่แล้ว +2

    The sound design in the animated parts is on another level. I'm guessing the dot arrangement reminded the animator of a button accordion?

  • @3dplanet100
    @3dplanet100 5 ปีที่แล้ว +6

    Amazing. Math is like a logic puzzle that everything is related and connected.

  • @Sylocat
    @Sylocat 5 ปีที่แล้ว

    Something I didn't notice until I showed my mom this video and she pointed it out, was that the nontrivial rows have vertical symmetry. The first and last rows are the same, just offset, as are the 2nd and 2nd-to-last rows, and so on.

  • @rudyhero1995
    @rudyhero1995 5 ปีที่แล้ว +83

    Like the video, didnt realy like the sound effects sounded a bit heavy or something

    • @aldasundimer
      @aldasundimer 5 ปีที่แล้ว +5

      The beeps were annoying to be honest. But great video as you said.

    • @emilchandran546
      @emilchandran546 5 ปีที่แล้ว

      Look up stradella bass system

  • @Ojisan642
    @Ojisan642 5 ปีที่แล้ว

    What a nice ending. They recognized the beauty of it first, and then later it became important.

  • @penand_paper6661
    @penand_paper6661 5 ปีที่แล้ว

    The sound effects are really on point.

  • @АртурАбдуллин-ц4х
    @АртурАбдуллин-ц4х 5 ปีที่แล้ว +48

    Найс рашен аксент. Гуд, намберфайл, вэри гуд!)

    • @jannegrey
      @jannegrey 5 ปีที่แล้ว +8

      Did you just wrote English phonetically in Bukwa's? Sorry my Cyrillic is VERY slow.

    • @АртурАбдуллин-ц4х
      @АртурАбдуллин-ц4х 5 ปีที่แล้ว

      @@jannegrey yes, you are right!)

    • @djkm9558
      @djkm9558 5 ปีที่แล้ว

      Artur Abdullin???

    • @dmitry-dmitry
      @dmitry-dmitry 5 ปีที่แล้ว

      Зато все понятно. Англичан носителей сложнее на слух воспринимать.

    • @user-tk2jy8xr8b
      @user-tk2jy8xr8b 5 ปีที่แล้ว +1

      Zato vsyo ponyatno ;)

  • @pedroscoponi4905
    @pedroscoponi4905 5 ปีที่แล้ว

    This was really cool :) I am all for more Prof. Sergei!

  • @navjotsaroa2518
    @navjotsaroa2518 5 ปีที่แล้ว +6

    So could this be extrapolated to 3D solids and then even higher dimensions, where you would draw lines in order to make pyramids? If so, what would that look like and what difference would be made if we used triangular based pyramids or square based pyramids or one with any other base?

    • @FiniteJest
      @FiniteJest 5 ปีที่แล้ว +1

      Algebraically it seems related to a determinant so you would need to relate 9 numbers together instead of the 4. It might work with stacking parallelpipeds, might be a fun research project.

  • @Bigandrewm
    @Bigandrewm 5 ปีที่แล้ว +5

    I'm guessing that sound effect for drawing is a sampled accordion? Might be neat to modify that idea slightly by having a set of accordion notes which are chosen by some pattern referencing the video.

    • @pmcpartlan
      @pmcpartlan 5 ปีที่แล้ว +2

      Yes, it was an accordion that I sampled a while ago, not sure it quite worked here (or maybe there was just too much of it). But yeah, working on this has made me want to do more fun systematic things with the sound design.

  • @msolec2000
    @msolec2000 5 ปีที่แล้ว

    Yes! More about Catalan Numbers, please! They are awesome and they are EVERYWHERE!

  • @indiarnav
    @indiarnav 5 ปีที่แล้ว +4

    Could you go through the recent proof for the sensitivity conjecture by Hao Huang? Seems like it could be an interesting topic under graph theory.

  • @UnorthodoxSoundwave.
    @UnorthodoxSoundwave. 5 ปีที่แล้ว +1

    I'm amazed that he didn't mention the patterns in the rows are mirrored on the grid:
    1 1 1 1 1 1 1 1 1 1 (X - 1)
    _________________ (X)
    _________________ (X + 1)
    _________________ (X + 2)
    ...
    _________________ (N - 1)
    _________________ (N)
    1 1 1 1 1 1 1 1 1 1 (N + 1)
    Like how X - 1 and N + 1 are the same pattern of 1 1 1, N and X would also follow the same sequence, as well as X + 1 and N - 1, and so on. Though the sequences don't start in the same column every time, they always shared the same one across the row.

  • @Sgrunterundt
    @Sgrunterundt 5 ปีที่แล้ว +8

    2:34 What a miracle that all those fractions with denominator one turned out to be integers.
    I mean that the rest of the pattern holds is super interesting, but for the first calculated row it is hardly surprising that they are integers.

  • @liamvictor
    @liamvictor 5 ปีที่แล้ว

    I get such joy from these videos. One day I might even understand some maths.

  • @usualsuspect2259
    @usualsuspect2259 5 ปีที่แล้ว +31

    What would have happened if we get, instead of shapes in 2D space,
    Shapes in 3D space and we triangulate them, if that's possible?

    • @JamesDavy2009
      @JamesDavy2009 5 ปีที่แล้ว +11

      To look at the 3-D version, one would need to ask how many tetrahedra does the vertex in question have in common?

    • @usualsuspect2259
      @usualsuspect2259 5 ปีที่แล้ว +1

      That's probably an approach

    • @andymcl92
      @andymcl92 5 ปีที่แล้ว +10

      @@JamesDavy2009 Possibly a trivial question. Is it always possible to split a polyhedron into tetrahedra?

    • @JamesDavy2009
      @JamesDavy2009 5 ปีที่แล้ว +3

      @@andymcl92 There's a question for the people of Numberphile.

    • @tempestaspraefert
      @tempestaspraefert 5 ปีที่แล้ว +2

      There is exactly one (relevant) way to make an n-sided (convex) polygon.
      There are several possible ways to make an n-sided polyhedron (e.g. an n-1-sided pyramid or an n-2-sided prism). This makes it less likely that this also works in 3D, I think.

  • @tomfryers2
    @tomfryers2 5 ปีที่แล้ว +4

    The animator must've had fun with this one.

  • @dominiquelaurain6427
    @dominiquelaurain6427 5 ปีที่แล้ว +1

    I like very much to read Tabachnikov's papers about geometry and mathematical billiards (I am recently interested in that "mathematic dynamics). Theory he works about are really deep bridges between big parts of mathematics. ...if you can interview the others (Richard Evan Schwarz, ..) it would be great. Billiards are deeply linked with physics and some math modeling.

  • @enderwiggins8248
    @enderwiggins8248 5 ปีที่แล้ว +6

    Kinda random, but I really appreciate your sound design, like the harpsichord when you’re transforming the polygons

  • @cmusard3
    @cmusard3 5 ปีที่แล้ว +8

    Is there accordion sounds bc the frieze grid looks like the accordion bass keyboard?

  • @jakistam1000
    @jakistam1000 5 ปีที่แล้ว +1

    Finally someone that writes the numbers the way I do! :D

  • @RunstarHomer
    @RunstarHomer 2 ปีที่แล้ว +1

    I'm curious why the triangulations are considered different even if they're identical up to rotation. If you rotate the polygon, you still get the same frieze pattern, since they are periodic.

  • @tamirerez2547
    @tamirerez2547 5 ปีที่แล้ว

    Please raise the salary of the voice man. He deserves it.

  • @assasinsbear
    @assasinsbear 5 ปีที่แล้ว

    Good job on the sound desing in this video !

  • @GrapefruitGecko
    @GrapefruitGecko 5 ปีที่แล้ว +5

    I want to know what this has to do with the Catalan numbers.... also how did Conway and Coxeter think to relate these two seemingly different ideas??

    • @jaydendickson
      @jaydendickson 5 ปีที่แล้ว +3

      The catalan numbers are just the number of ways of partitioning the polygon into triangles.

  • @Vaaaaadim
    @Vaaaaadim 5 ปีที่แล้ว

    This is just absolutely crazy, how on earth would anyone even see a connection like this!

  • @veggiet2009
    @veggiet2009 5 ปีที่แล้ว +2

    Whenever any number fact or theorem relate to geometry, I invariably will ask is this generizable to multiple dimensions in some way? Like if you divide a polyhedron into multiple tetrahedron, could you craft a number sequence from that and what mathematically properties would it have?

  • @jasonpatterson8091
    @jasonpatterson8091 5 ปีที่แล้ว +4

    It's not really strange that the first row the professor determined was entirely made of integers. If the value is (WE-1) / N, and N is always 1, then of course it would be.

    • @skyjoe55
      @skyjoe55 2 ปีที่แล้ว

      And positive because if W and E are positive then WE is positive and a positive minus 1 is either positive or zero
      (This only works if zero is not considered a positive number)

  • @megusta9268
    @megusta9268 4 ปีที่แล้ว +7

    rip john connoway

  • @DouglasZwick
    @DouglasZwick 5 ปีที่แล้ว +1

    Man, the sound design in this video is delightful.

  • @Dudleymiddleton
    @Dudleymiddleton 5 ปีที่แล้ว +1

    Like the sound effects!

  • @BeCurieUs
    @BeCurieUs 5 ปีที่แล้ว +3

    All the little sound effects were fun, btw :D

  • @richardgratton7557
    @richardgratton7557 5 ปีที่แล้ว +8

    Best hand-written numbers ever, not like Grimes! :)

  • @elmo2you
    @elmo2you 5 ปีที่แล้ว +4

    What a charming man. Also looks quite a bit younger than the 63 years he has.

  • @carlosuzaier5858
    @carlosuzaier5858 5 ปีที่แล้ว +2

    Vid is cool as always, but the guy here really takes the cake. His accent is so cool and his general vibe is nice

  • @anonsensename5101
    @anonsensename5101 5 ปีที่แล้ว

    2:53 That's not strange, it's because N is always 1 and you divide by N. Dividing an integer by 1 never gives a fraction.

  • @technoguyx
    @technoguyx 5 ปีที่แล้ว +7

    Beautiful and totally unexpected. That's how I like my mathematics :D

  • @pierremarcotte6299
    @pierremarcotte6299 5 ปีที่แล้ว

    I love how he says: "pedioric" instead of "periodic".
    0:59

  • @krahnjp
    @krahnjp 5 ปีที่แล้ว +1

    I might have missed it, but I didn't hear mention about the fact that the last row of numbers (above the ones) seems to always be the same sequence as you entered, and the too middle rows are the same sequence of numbers as well. Does that mirroring of sequences across the board always hold true for all polygons?

  • @madanisihamdi2653
    @madanisihamdi2653 5 ปีที่แล้ว

    Thank you MSRI

  • @isaactfa
    @isaactfa 5 ปีที่แล้ว

    I love these theorems that deal with natural number patterns. They seem the likeliest (from a complete layman's point of view) to crop up in nature and be useful someday.

  • @nialltracey2599
    @nialltracey2599 5 ปีที่แล้ว

    A few thoughts.
    Why is he treating the rotational symmetry as different solutions? The pattern produced is recurring and periodical -- a rotation of the polygon is just a "phase shift" of the wave periodicity of the function...
    n-3 is the number of lines required to triangulate the polygon. Surely no coincidence. Certainly worth noting
    I didn't notice any explicit mention of the fact that there's a sort of symmetry in the result, with the second last row being a rotation/phase shift of the second row and the 3rd last row being a rotation/phase shift of the 3rd row. Trivially, this is a necessary condition of their being only one solution (if the 2nd and 2nd last rows were different, this would mean there were at least two solutions by flipping it upside down, which would mean the link with the vertex numbering was broken). Again worth mentioning.

  • @PPYTAO
    @PPYTAO 5 ปีที่แล้ว

    Absolutely fascinating!

  • @Henrix1998
    @Henrix1998 5 ปีที่แล้ว +26

    How about WE-NS=a? I feel like there was so much he didn't touch at all

    • @YellowBunny
      @YellowBunny 5 ปีที่แล้ว +18

      What about sin(W)*e^(E-N)+S^(W+E²*i)=a?

    • @evanmurphy4850
      @evanmurphy4850 5 ปีที่แล้ว +18

      @@YellowBunny Trivial Obviously

    • @agentstache135
      @agentstache135 5 ปีที่แล้ว +15

      Evan Murphy thus it is left as an exercise for the reader

    • @thejelambar82
      @thejelambar82 5 ปีที่แล้ว +1

      Just multiply all of the number by a

    • @P21_c
      @P21_c 5 ปีที่แล้ว

      @@thejelambar82 by the square root of a

  • @scottmuck
    @scottmuck 5 ปีที่แล้ว

    Well of COURSE I’m going to head over to Numberphile2 now.

  • @ionutradulazar8984
    @ionutradulazar8984 5 ปีที่แล้ว

    You can also notice that the k-th and (n-k)-th row are the same but shifted by an amount

  • @Wout680
    @Wout680 4 ปีที่แล้ว

    4:27 Top and bottom are the same, second and second last are the same & the two middle ones are the same. Coincidence?

  • @SocksWithSandals
    @SocksWithSandals 4 ปีที่แล้ว +1

    Amazing.
    Has this phenomenon found any real-world use, like computing or encryption?

  • @n00dle_king
    @n00dle_king 5 ปีที่แล้ว

    Sound design on point today.

  • @francomiranda706
    @francomiranda706 5 ปีที่แล้ว +1

    that equation S(N,E,W)=(NE+1)/W looks convieniently like a more general version of the triangle formula A(b,h)=(b+h)/2.
    Considering that in order to find these non-integer solutions, we have to solve for n iterations of S, something like S(S(N,E,W),E,W), could this be the connection to the trianglization?

  • @banjofries
    @banjofries 5 ปีที่แล้ว +1

    huh, I remember seeing a few of those hexagon patterns in media in reference to things like "magic runes". Funny what people came up with without maths...

  • @SupriyoChowdhury5201
    @SupriyoChowdhury5201 5 ปีที่แล้ว +3

    Please make a video on Robert langlands program

  • @flumbofrommelkont6863
    @flumbofrommelkont6863 5 ปีที่แล้ว +11

    For you see frieze, you're not dealing with your average mathematician anymore...

  • @61rmd1
    @61rmd1 5 ปีที่แล้ว

    Amazing, and well described...thanks a lot for this video

  • @uweperschke6799
    @uweperschke6799 5 ปีที่แล้ว

    Has anyone noticed that the last non-trivial row represents another triangulation?
    I wonder if one can eventually retrieve all triangulations if that row is used as new seed row.

  • @Ruddigore
    @Ruddigore 5 ปีที่แล้ว

    A fascinating video. Thank you.

  • @Narokkurai
    @Narokkurai 5 ปีที่แล้ว +1

    Interesting. So it's a way to numerically describe the construction of any polygon using triangles? I wonder if it has any applications in 3D graphics.

  • @ramansb8924
    @ramansb8924 5 ปีที่แล้ว +7

    But i don't understand how it works?? Please explain

    • @jimothyjimothy1
      @jimothyjimothy1 5 ปีที่แล้ว +2

      math

    • @ramansb8924
      @ramansb8924 5 ปีที่แล้ว +3

      @@jimothyjimothy1 thank you so much that helped me alot

  • @ThePotaToh
    @ThePotaToh 5 ปีที่แล้ว

    0:27 how do people write the r backwards like that

  • @venkatbabu186
    @venkatbabu186 4 ปีที่แล้ว

    This is the basic pattern of metals and that's why they conduct electricity. Magnetic polarity works similar. Special pattern of surface symmetry.

  • @christopherpappas7474
    @christopherpappas7474 5 ปีที่แล้ว

    Gotta love that gentleman's accent!

  • @EmergentSea1
    @EmergentSea1 5 ปีที่แล้ว

    When I saw “frieze patterns,” I was thinking “oh, I remember Vi Hart mentioning those, that’s a repeating glide reflection, right?” Then the video started, and was purely numbers, so I thought it was unrelated with just a coincidental name, but then I realized that, sure enough, the numbers were arranged in a repeating glide reflection.

  • @morismateljan6458
    @morismateljan6458 5 ปีที่แล้ว +8

    Does the second row correspond to triangulation of some other n-gon?

    • @gabor6259
      @gabor6259 5 ปีที่แล้ว

      Do the diagonals?

  • @meve5918
    @meve5918 5 ปีที่แล้ว +1

    Is it significant that row 1 and row n contain the same numbers (with starting point shifted), as do rows 2 and n-1, 3 and n-2 etc?

  • @ezraross6792
    @ezraross6792 5 ปีที่แล้ว +3

    I love the music for when you take the numbers off the polygons

  • @georgemissailidis1504
    @georgemissailidis1504 5 ปีที่แล้ว

    The sequence could also be the sequence for a recursive f(n)=(3^n+1)/2, unless you _reallY_ check if the heptagon has 42 solutions ;)

  • @CCarrMcMahon
    @CCarrMcMahon 5 ปีที่แล้ว +3

    Can you expand it infinitely to the right or left as long as you repeat the sequence?

  • @ffggddss
    @ffggddss 5 ปีที่แล้ว

    Frieze (leads to) number sandwich (leads to) cluster algebras.
    Cool!! A whole new mathematical world to explore!
    Fred

  • @drewdurant3835
    @drewdurant3835 5 ปีที่แล้ว

    I love your channel!!

  • @Cernoise
    @Cernoise 5 ปีที่แล้ว

    I came into this expecting a refresher on what I learnt about frieze groups in algebraic geometry, but this seems quite different! (And yet, is probably isomorphic to it somehow.)

  • @liggieep
    @liggieep 5 ปีที่แล้ว +35

    Gonna be honest, those sound effects are terrible and distracting, i thought my headphones were broken and getting feedback.

    • @ragnkja
      @ragnkja 5 ปีที่แล้ว +5

      liggieep
      I don’t mind the “blops”, but the synthetic hum is terrible.

    • @XenophonSoulis
      @XenophonSoulis 5 ปีที่แล้ว

      @@ragnkja It's not synthetic, it is accordion.

  • @dellarosa24601
    @dellarosa24601 5 ปีที่แล้ว

    THIS is why I love math.