A Fascinating Thing about Fractions - Numberphile

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 1.1K

  • @ARVash
    @ARVash 5 ปีที่แล้ว +379

    I never knew I could be excited about fractions but here we are. Great job Holly, your enthusiasm is infectious.

  • @MozartJunior22
    @MozartJunior22 5 ปีที่แล้ว +1014

    It's amazing how after Brady did so many of these videos, for so many years, he has developed a mathematician's mind, and is asking EXACTLY the questions a mathematician would ask.

    • @akhileshmittal3396
      @akhileshmittal3396 4 ปีที่แล้ว +16

      cause he is one

    • @pedroaugusto656
      @pedroaugusto656 4 ปีที่แล้ว +14

      Does not he have a PHD in math ?

    • @fernandomargueirat6454
      @fernandomargueirat6454 4 ปีที่แล้ว +24

      I kind of agree, but I'm pretty sure there are discussions about the topics before they record the interviews and these things are probably already discussed. It doesn't take away any value, he still has to be able to understand the concepts and throw the question at the right time, which is a skill that is much harder than what people expect.

    • @RodelIturalde
      @RodelIturalde 4 ปีที่แล้ว +25

      @@pedroaugusto656 he is a journalist.

    • @huh968
      @huh968 4 ปีที่แล้ว +5

      i mean that's pretty much expected tho lol, one would assume he learned quite a bit over those years

  • @73honda350
    @73honda350 5 ปีที่แล้ว +221

    She's one of the better interviewees on this channel, and as an interviewer, Brady is good at asking insightful, relevant questions.

    • @hi_pd
      @hi_pd 4 ปีที่แล้ว +5

      What about Dr Hannah Fry?

  • @TheMrvidfreak
    @TheMrvidfreak 5 ปีที่แล้ว +626

    What a way to end the week, she's one of my favorites on this channel!

    • @R_V_
      @R_V_ 5 ปีที่แล้ว +6

      Holly Krieger > Hannah Fry.

    • @BubbaJ18
      @BubbaJ18 5 ปีที่แล้ว +25

      @@R_V_ why not both?

    • @Ken.-
      @Ken.- 5 ปีที่แล้ว +1

      Today's Sunday.

    • @sharpnova2
      @sharpnova2 5 ปีที่แล้ว +5

      Are you capable of being honest about why?

    • @antilogis6204
      @antilogis6204 5 ปีที่แล้ว +2

      @@sharpnova2 Extend that question to the 500+ likers.

  • @johnathancorgan3994
    @johnathancorgan3994 5 ปีที่แล้ว +180

    Between Holly and James Grime it's hard to choose who has more infectious enthusiasm for math!

    • @jacobshirley3457
      @jacobshirley3457 4 ปีที่แล้ว +30

      What about that klein bottle guy?

    • @AdStellae-
      @AdStellae- 4 ปีที่แล้ว +14

      @@jacobshirley3457 Cliff is great!

    • @RadicalCaveman
      @RadicalCaveman 3 ปีที่แล้ว

      @@jacobshirley3457 You mean the guy that's in one?

    • @HilbertXVI
      @HilbertXVI 3 ปีที่แล้ว +4

      @@jacobshirley3457 I think cliff is just on another level

    • @bane2201
      @bane2201 ปีที่แล้ว +1

      @@HilbertXVI Yeah Cliff wins hands-down. Whenever I watch him, I feel like his enthusiasm about math is so visceral (like his dancing) that it's _only_ restrained by the limits of the human body. If he was able to _fully_ unleash his true power in some explosive burst, his house would be a crater, and his city probably would be too.

  • @dliessmgg
    @dliessmgg 5 ปีที่แล้ว +634

    What fascinates me in the example that she gave with three numbers in a loop is, the specific rationals can be related to music in just intonation tuning. The 5:4 ratio is a major third, and the 7:4 ratio is a harmonic seventh (there is meaning behind those musical terms, but there's also a lot of historical baggage, so don't worry about the details). If you combine those two with a root note (1:1 ratio) and a perfect fifth (3:2 ratio), you get a harmonic seventh chord, that occurs frequently in for example barbershop quartet singing. The perfect fifth can often be left out (because our ears/our culture often hears them as implied) but the root needs to be included. Now the third rational in the three number loop can be related to the ratio 1:4, which in musical terms is two octaves below the root. But due to octave equivalence is in the same pitch class as the root, and can be used as such.
    tl;dr: the three rationals in the loop she showed, when interpreted in musical terms, form a neat harmonic seventh chord.

    • @doublespoonco
      @doublespoonco 5 ปีที่แล้ว +26

      This is intriguing

    • @harrympharrison
      @harrympharrison 5 ปีที่แล้ว +37

      I would love a Numberphile video explaining some aspects of just intonation.

    • @jonnyphenomenon
      @jonnyphenomenon 5 ปีที่แล้ว +28

      Math in music is fascinating! So, is that just a coincidence? Or could it reveal other patterns in this equation exactly?

    • @Tapecutter59
      @Tapecutter59 5 ปีที่แล้ว +11

      Interesting observation.

    • @doublespoonco
      @doublespoonco 5 ปีที่แล้ว +10

      @@harrympharrison maths in music is always really interesing

  • @LeonardNguyenSchyen
    @LeonardNguyenSchyen 5 ปีที่แล้ว +2311

    Brady is a crazy good math interviewer wth...

    • @Bronzescorpion
      @Bronzescorpion 5 ปีที่แล้ว +449

      Agreed, he asks great questions. Either to clear something up, that was so obvious to the mathematician, that they briefly forgot to explain it or to give them a new point to explain from and thus progress the interview.
      I really think much of the joy these videos give, are in fact due to Brady's skill as an interviewer.

    • @CalvinHikes
      @CalvinHikes 5 ปีที่แล้ว +147

      He's clearly a smart guy.

    • @mfc4655
      @mfc4655 5 ปีที่แล้ว +102

      he educates himself on the topic so he can ask in depth question

    • @davidgillies620
      @davidgillies620 5 ปีที่แล้ว +169

      I'm often struck by how quickly he homes in on a subtlety or a generalisation of a problem. Obviously a very highly intelligent individual. I think that must be very rewarding for the people he's interviewing (there really isn't much that scientists/mathematicians/engineers like more than explaining something cool to an intelligent layman)..

    • @rayu__641
      @rayu__641 5 ปีที่แล้ว +9

      i agree!!!!

  • @yvessioui2716
    @yvessioui2716 5 ปีที่แล้ว +4

    Brings me to think about modulo arithmetic, fractions behavior in this context, and use of fraction to leaves placement by plants which is also kind of modulo to go from height to the next while growing. We obviously find a return to the starting point (orientation wise) at some time in life development of some plants. I love this.

  • @whoeveriam0iam14222
    @whoeveriam0iam14222 5 ปีที่แล้ว +800

    maths does that so often
    1? easy!
    2? still easy!
    3? soo many but not as obvious
    4? haha no

    • @riccardoorlando2262
      @riccardoorlando2262 5 ปีที่แล้ว +54

      Along with the other thing math does:
      "We found this cool, easy, simple process and we want to run it backwards. Lemme get back to you with 100 years of research, 27 books and 492 papers"

    • @Patalenski
      @Patalenski 5 ปีที่แล้ว +27

      No, no, they said: 1 is easy, 2 is natural, 3 is complicated and 4+ is impossible! My wife's on the same opinion... :-D

    • @danielmalo1753
      @danielmalo1753 5 ปีที่แล้ว +34

      TREE(n)
      1? simple
      2? of course
      3? no way jose

    • @someoneonyoutube8622
      @someoneonyoutube8622 5 ปีที่แล้ว +4

      Yeah no it checks out I even tried using imaginary numbers too and it seems to cycle in 3’s or 2’s or 1’s but never 4’s or anything more’s

    • @Jacob-ye7gu
      @Jacob-ye7gu 5 ปีที่แล้ว +1

      No matter how many iterations you're looking for, it's just finding solutions to a polynomial

  • @TC-bz9dz
    @TC-bz9dz 5 ปีที่แล้ว +70

    this video is perfect timing....this is my lesson for my students after Christmas break...im going to tell them all to watch this to get them ready...Thank you for the video !!

  • @gentlemandude1
    @gentlemandude1 5 ปีที่แล้ว +13

    I love that she laughs so much. It's fun to hear Dr. Krieger giggle with delight as reveals a surprising truth about fractions that on the surface seems quite mundane. It must be so much fun to be in one of her classes.

  • @waynewelshans1172
    @waynewelshans1172 5 ปีที่แล้ว +209

    I'm 36 and I feel like a 7th grader crushing on his math teacher ever time I watch Holly.

    • @evanw7878
      @evanw7878 5 ปีที่แล้ว +10

      Creep

    • @mannyheffley9551
      @mannyheffley9551 4 ปีที่แล้ว +4

      You are a deviant

    • @iamtheiconoclast3
      @iamtheiconoclast3 4 ปีที่แล้ว +24

      Well that got out of hand quickly. Some people are really offended at some fairly ordinary things. :|

    • @Palimbacchius
      @Palimbacchius 4 ปีที่แล้ว +6

      @@iamtheiconoclast3 or pretend to be ...

    • @fattestallenalive7148
      @fattestallenalive7148 4 ปีที่แล้ว +12

      7:58

  • @zray2937
    @zray2937 5 ปีที่แล้ว +259

    Good questions by brady.

    • @JMTavares7
      @JMTavares7 5 ปีที่แล้ว +11

      His questions have gotten better then they used to be. He's learned from previous guests of course, a lot of the sames themes repeat, such as proving that we can/can't as opposed to conjecturing and infinite # of ways to accomplish something, etc.

    • @omikronweapon
      @omikronweapon 5 ปีที่แล้ว +8

      I've always been pleasantly surprised by Brady's active role in the video. He often asks the same questions I have. He doesn't just let things slide.

    • @nicolasjacquinot4202
      @nicolasjacquinot4202 5 ปีที่แล้ว +2

      No there's only 7.

    • @shrirammaiya9867
      @shrirammaiya9867 5 ปีที่แล้ว

      @Captain_Morgan they will be divisible by 7

    • @bipcuds
      @bipcuds 5 ปีที่แล้ว

      @Captain_Morgan Only 7 will be prime, because 77....777 = 7 * 11....111

  • @jlunde35
    @jlunde35 5 ปีที่แล้ว +139

    I surely want to leave a comment that your family would be happy to read. Great content and thank you.

    • @jgcornell
      @jgcornell 4 ปีที่แล้ว +1

      I understood that reference :)

    • @Apocalymon
      @Apocalymon 3 ปีที่แล้ว

      @@jgcornell what's the reference!

  • @Codricmon
    @Codricmon 5 ปีที่แล้ว +205

    1:52 - Matt Parker: “Finally, a worthy opponent! Our battle will be legendary!“

    • @thejiminator8816
      @thejiminator8816 5 ปีที่แล้ว +5

      haha

    • @shambosaha9727
      @shambosaha9727 5 ปีที่แล้ว +1

      @@thejiminator8816 I know you

    • @djkm9558
      @djkm9558 5 ปีที่แล้ว

      😂😂😂🤣🤣🤣🤣

    • @lazypops3117
      @lazypops3117 5 ปีที่แล้ว +1

      explain this to me someone

    • @Codricmon
      @Codricmon 5 ปีที่แล้ว

      @@lazypops3117 It's a quote from _Kung Fu Panda._

  • @fatilumkins8730
    @fatilumkins8730 4 ปีที่แล้ว +23

    I love the “whoosh” sound Holly makes at 6:23. I’m glad I am not the only one that does that when drawing long arrows 😅

  • @asparkdeity8717
    @asparkdeity8717 2 ปีที่แล้ว +30

    I can't believe Holly will be my Complex Analysis lecturer next term in my second year of undergraduate maths degree!

  • @mediawatchstream8340
    @mediawatchstream8340 2 ปีที่แล้ว

    Thanks!

  • @vylbird8014
    @vylbird8014 5 ปีที่แล้ว +254

    This looks a lot like the equation for the Mandlebrot set, but sticking to the real number line so you don't get pretty pictures.

    • @MagruderSpoots
      @MagruderSpoots 5 ปีที่แล้ว +28

      With the right numbers you get the logistic equation which is the mandelbrot set on the real number line.

    • @simoncopar2512
      @simoncopar2512 5 ปีที่แล้ว +23

      It is, and the periodic sequences are related to the centers of out-growing bulbs on the real axis of the Mandelbrot set. Numberphile is slipping, normally, they would mention such interesting connections.

    • @Bollibompa
      @Bollibompa 5 ปีที่แล้ว +14

      @@simoncopar2512
      Yeah, for sure. One small example means Numberphile is slipping.

    • @Gruuvin1
      @Gruuvin1 5 ปีที่แล้ว +7

      And, what does Holly know about the Mandelbrot set? Right?

    • @Narokkurai
      @Narokkurai 5 ปีที่แล้ว +5

      As I understand it, it IS the Mandelbrot set. C and Z are are the axes of the plane, and the beautiful colors of the Mandelbrot Set correspond to whether any combination of [Z,C] is periodic, and if so how many iterations it takes to converge. This theorem seems to be saying that for any non-integer rational Z, there is some value C which becomes periodic in three or fewer steps, but we cannot say for sure if there are combinations which will converge in 5 or more.

  • @astroboy3002
    @astroboy3002 4 ปีที่แล้ว +10

    Imagine how much of an unknown genius the guy sorting the paper at the recycling plant is.

  • @tscoffey1
    @tscoffey1 5 ปีที่แล้ว +458

    “Zed squared”
    When an American professor has gone over to the dark side.

    • @jshariff786
      @jshariff786 5 ปีที่แล้ว +50

      Ah, the dark side of pronouncing it the way that the people who invented the language (and the vast majority of those who speak it) do. Cheers from Canada.

    • @mattbarnes3467
      @mattbarnes3467 5 ปีที่แล้ว +30

      @@jshariff786 but we kicked their asses twice and bailed them out twice. And as we all know, to the victor.goes the spoils. Z it is.

    • @jshariff786
      @jshariff786 4 ปีที่แล้ว +24

      Within your borders, sure. Everywhere else it is Zed. So really, majority rules (based on what the entire English-speaking world is doing). Also, you didn't write "Zee it is", you just wrote "Z it is".

    • @shyambuddh5546
      @shyambuddh5546 4 ปีที่แล้ว +75

      Can't believe you all are literally having an argument about America Vs England based on how to pronounce the letter "Z" in the comment section of a math video.

    • @justincronkright5025
      @justincronkright5025 4 ปีที่แล้ว +6

      @@mattbarnes3467 Go watch, This Hour Has 22 Minutes - Apology to Americans.
      'I mean when you're going up against a crazed dictator, you want to have your friends by your side. I realise it took more than two years before you guys pitched in against Hitler. But that was different, everyone knew he had weapons'!

  • @theflaggeddragon9472
    @theflaggeddragon9472 5 ปีที่แล้ว +1

    I remember stumbling on this EXACT problem about a year ago and trying over and over to show that for a polynomial of degree d, there are no points of period larger than d+1 (any period less than or equal to d+1 can be solved directly by a system of d+1 equations with d+1 unknowns). Then hours later I googled to see that even in the quadratic case we're almost completely in the dark! What a wonderful problem in arithmetic dynamics.

  • @zubmit700
    @zubmit700 5 ปีที่แล้ว +76

    I love the 'easy to understand' math problems that ends up with complicated solutions that I will never understand.
    Makes math so much more interesting.

    • @FFXIDragonli
      @FFXIDragonli 5 ปีที่แล้ว

      Non Non 1-(-1)= 2, 1+(-1)=0, (-1)-1=-2, and (-1)+1=0.

    • @ScottStratton
      @ScottStratton 5 ปีที่แล้ว

      Non Non Non Non um ... no. That is some personally-invented symbol manipulation by you. Is math the ultimate, super-truth of the universe? Probably not - seems unlikely to me. But regardless, when one applies a cognitive system to the world, it has to make sense at least internally ... and what you are saying is just arbitrary and nonsensical.

  • @smoorej
    @smoorej 5 ปีที่แล้ว +1

    OK, I’ve been a patron for a while but I have to double my contribution immediately. Holly Krieger is the reason. She has an incredible ability to make difficult topics understandable. Please, please have her on more frequently. Plus between the Mandelbrot set and this periodic fraction stuff her topics are so incredibly interesting. I see Holly Krieger, I press like, then I watch.

  • @jadenpeterson4881
    @jadenpeterson4881 5 ปีที่แล้ว +68

    Really close to 3.14M Subscribers. I’m expecting a special episode.

    • @Brooke-rw8rc
      @Brooke-rw8rc 5 ปีที่แล้ว +9

      lmk when it gets to 6.28. Then they can celebrate with whole pies instead of half-pies.

    • @jeromeorji1057
      @jeromeorji1057 5 ปีที่แล้ว +10

      @@Brooke-rw8rc The Tau-ist vs the Pi-ous debate, circa 2019. Colorized

  • @themri
    @themri 5 ปีที่แล้ว +7

    Classic Numberphile video. What a treat!

  • @dhampson545
    @dhampson545 5 ปีที่แล้ว +474

    So weird to hear “zed” with an American accent.

    • @FBDSG
      @FBDSG 5 ปีที่แล้ว +78

      🇨🇦

    • @UnabashedOops
      @UnabashedOops 5 ปีที่แล้ว +13

      Dustin Boyd everyone I know says Zee FS

    • @jsloan16
      @jsloan16 5 ปีที่แล้ว +61

      Canadians say 'zed'.

    • @CowmanCowman
      @CowmanCowman 5 ปีที่แล้ว +10

      Massive respect for saying zed

    • @t7612-v6h
      @t7612-v6h 5 ปีที่แล้ว +34

      Big up to all the Canadians in the house.

  • @narutosaga12
    @narutosaga12 5 ปีที่แล้ว +23

    I’m glad she’s my inspiration to get through these finals right now

  • @alephnull4044
    @alephnull4044 5 ปีที่แล้ว +48

    For 2- and 3-cycles, the solution is 'easy' because you just need to solve a quadratic and a quartic polynomial equation respectively. But for 4-cycles you need to solve an octic (eighth-degree) equation, and higher degrees for larger cycles. It is a well-known result that you cannot solve a degree-five or higher polynomial equation in radicals. So it is not a surprise that no one knows how to find 'nice' larger cycles (but of course purely numerical solutions can be easily computed).

    • @riccardoorlando2262
      @riccardoorlando2262 5 ปีที่แล้ว +6

      Hold on. A 1-cycle requires a degree 2 polynomial solution. A 2-cycle, degree 4; a 3-cycle already requires a degree 8 polynomial solution...

    • @alephnull4044
      @alephnull4044 5 ปีที่แล้ว +2

      Riccardo Orlando Yeah sorry you’re right. Kinda surprising that they’ve got examples of 3-cycles then. But point still stands about higher cycles.

    • @patrickhodson8715
      @patrickhodson8715 5 ปีที่แล้ว +1

      Aleph Null maybe it was just a guess-and-check situation. -7/4 isn’t that weird of a reaction if you’re just trying stuff to see what works

    • @patrickt.4121
      @patrickt.4121 5 ปีที่แล้ว

      What about irrationals? (Not mentioned in video and so not directly related to your comment) We know how to solve those polynomials, no need for radicals ...

    • @redpepper74
      @redpepper74 2 ปีที่แล้ว +1

      I’ve heard that you can’t express all degree 5 polynomial solutions with radicals, so I wonder what other ways you could express them. Is there another kind of operation/ system/object that mathematicians use there?

  • @homieknowme223
    @homieknowme223 5 ปีที่แล้ว +2

    6:23 fascinating how that fraction made woosh sound travelling towards bottom left. Math is always fascinating.

  • @avikdas4055
    @avikdas4055 5 ปีที่แล้ว +467

    I want some math with James Grime. He is one of the first guys who boosted this channel. I really miss him. I have not seen him in this channel for a long time.
    Also it would be great if you got some initial members in this channel, like Hannah Fry or Simon Pampena.

    • @echo5delta286
      @echo5delta286 5 ปีที่แล้ว +23

      He joined Matt Parker for a video on his channel, Standupmaths, 7 months ago. That was a fun one called Difference of Two Squares.

    • @ChrisLuigiTails
      @ChrisLuigiTails 5 ปีที่แล้ว +12

      Shouldn't forget about Matt! Him and Cliff Stoll are my favourites!

    • @L0j1k
      @L0j1k 5 ปีที่แล้ว +3

      MORE SIMON!

    • @Crissix100
      @Crissix100 5 ปีที่แล้ว +3

      @@ChrisLuigiTails Oh I love Cliff, his enthusiasm is just amazing!

    • @brianpoi5117
      @brianpoi5117 5 ปีที่แล้ว +3

      @@frankwc0o We need a Statisticsphile to go along with Numberphile and Computerphile.

  • @ninosawbrzostowiecki1892
    @ninosawbrzostowiecki1892 5 ปีที่แล้ว +16

    this lady was a sub for a number theory class I took years ago.

  • @gordonchan4801
    @gordonchan4801 5 ปีที่แล้ว +83

    2:05 'horseshoe mathematics'

  • @hereb4theend
    @hereb4theend 4 ปีที่แล้ว

    I'm so glad channels like these exists.

  • @garret1930
    @garret1930 5 ปีที่แล้ว +40

    Z=2 , c=-2
    Z always equals 2
    This is actually the start to a family of solutions where you just set c=-(Z^2-Z)
    For all positive integer values of Z.
    This seems like it has a close relationship with the first example Holly showed for the fractions where Z=1/2 and c=1/4
    If c=-(Z^2-Z) then c=1/4
    I think it applies to all values of 0

    • @ABaumstumpf
      @ABaumstumpf 5 ปีที่แล้ว +4

      Was a really strange way they phrased it. It is still an infinite number of integer-combinations you can use - not very interesting but still they exist.

    • @evanbelcher
      @evanbelcher 5 ปีที่แล้ว +10

      It doesn't just work for positive integers, it works for literally every value of Z because it's the definition of a 1-value cycle.
      Z' = Z^2 + C (original equation)
      Z' = Z (defines a 1-value cycle)
      Z = Z^2 + C (rephrased equation)
      C = Z - Z^2 (solve for C)
      which is just the simplified version of your formula.

    • @ABaumstumpf
      @ABaumstumpf 5 ปีที่แล้ว

      @@evanbelcher "which is just the simplified version of your formula.
      "
      That one step of expanding the sign :P

    • @riccardoorlando2262
      @riccardoorlando2262 5 ปีที่แล้ว

      @Non Non I don't understand. Can you explain what you mean, or at least provide references where I may read?

    • @garret1930
      @garret1930 4 ปีที่แล้ว

      @@ABaumstumpf lol yes I should've seen that.

  • @MATHguide
    @MATHguide 4 ปีที่แล้ว

    Dr. Krieger has a fantastic ability to explain things very well.

  • @lucasnoritomi-hartwig3928
    @lucasnoritomi-hartwig3928 3 ปีที่แล้ว +6

    Is there a place to see the proofs showing it is impossible for 4 and 5?

  • @the_beemer
    @the_beemer 5 ปีที่แล้ว

    This channel is about to hit 3.14 Million subscribers...Thats THE real milestone

  • @MathAdam
    @MathAdam 5 ปีที่แล้ว +235

    Amy Adams teaches maths!

    • @Nihil975
      @Nihil975 5 ปีที่แล้ว +10

      That was my first thought too

    • @gabor6259
      @gabor6259 5 ปีที่แล้ว +12

      Ginny Weasley teaches maths!

    • @paulreader1777
      @paulreader1777 4 ปีที่แล้ว +1

      @@sockington1 'maths' is the more common terminology amongst English speaking countries outside the north American continent.

    • @ScottKentEdu
      @ScottKentEdu 4 ปีที่แล้ว +2

      Even the laugh.

  • @JWentu
    @JWentu 5 ปีที่แล้ว +2

    Her videos are always very interesting! thank you!

  • @RobberStormfire
    @RobberStormfire 5 ปีที่แล้ว +21

    I love the Holly videos. They are always interesting topics.

  • @missrobinhoodie
    @missrobinhoodie 5 ปีที่แล้ว +2

    My math teachers back from my gymnasium days would be so proud of me passionately watching numberphile!
    Also they would be very surprised...

  • @alanvo4037
    @alanvo4037 3 ปีที่แล้ว +5

    "You're not going to do the next one?"
    "I think it's 677"
    BOOOOOOOOOOM!

  • @nathanokun8801
    @nathanokun8801 5 ปีที่แล้ว +1

    Many catalysts in physics and chemistry are the loop kind where they change one or more times during their function, but the last step reverses this and puts them back where they started (carbon as the first step in a chain of elements inside of stars as an alternative method for changing hydrogen to helium, for example -- the "Solar Phoenix" process discovered by Hans Bethe). So this is not just an academic exercise.

  • @steffen5121
    @steffen5121 5 ปีที่แล้ว +19

    Holly Krieger and Hannah Fry are my favorites. I love them.

    • @jacobschiller4486
      @jacobschiller4486 4 ปีที่แล้ว +4

      Gee, I wonder why...

    • @steffen5121
      @steffen5121 4 ปีที่แล้ว +3

      @@jacobschiller4486 Me too. It's a mystery... 🤔

  • @alger8181
    @alger8181 5 ปีที่แล้ว +1

    The maths are far above my head, and yet these presenters explain the complicated subjects with such joy. This channel has me digging out my old electronics books and equipment, re-learning the maths i'd let slip for many years, and applying them to building again. Thank you.

  • @wntu4
    @wntu4 5 ปีที่แล้ว +6

    Dr. Holly = Autolike. My favorite equation.

  • @LB31415
    @LB31415 25 วันที่ผ่านมา

    3:32: can also have periodic starting from integers 2 and 3, when c=-7

  • @jesusthroughmary
    @jesusthroughmary 5 ปีที่แล้ว +6

    11 minutes after posting is the longest I have ever taken to watch a Dr Krieger video.

  • @eddiep5676
    @eddiep5676 5 ปีที่แล้ว

    FINALLY!!!!! She’s back!!!! More please!!!!!!!!!!!!!!!!!!!!

  • @matthewphilpott1702
    @matthewphilpott1702 5 ปีที่แล้ว +6

    This math makes me feel uncomfortable but after its done i feel chill

  • @comradesero
    @comradesero 3 ปีที่แล้ว

    Nothing more endearing than seeing someone nerd out over math. Love it.

  • @1ToTheInfinity
    @1ToTheInfinity 5 ปีที่แล้ว +93

    4:47 She just hit the woah

    • @chaossspy6723
      @chaossspy6723 5 ปีที่แล้ว +1

      ?

    • @blackcat5771
      @blackcat5771 5 ปีที่แล้ว

      ???

    • @CalvinHikes
      @CalvinHikes 5 ปีที่แล้ว +3

      Saw that.

    • @xybersurfer
      @xybersurfer 5 ปีที่แล้ว +2

      oh. "Hit The Woah" seems to be a dance move. i was expecting something more interesting

    • @sfbs
      @sfbs 5 ปีที่แล้ว

      1 to the Infinity lol with out even knowing

  • @StreuB1
    @StreuB1 5 ปีที่แล้ว

    The thing about Holly is that she is wickedly smart, more wickedly smart that most anyone would think if you just saw her walking down the street. People have this preconceived notion as to what a "mathematician" looks like or acts like and Holly breaks the mold with her ultra-bubbly personality and overall personna. The podcast that Brady just did with her is a testament to this and frankly, it was at LEAST an hour TOO SHORT!!! I could have listened to that (as well as Professor Frenkel's podcast 2 weeks ago!!!) for far longer than the podcast actually was.
    We need more Dr. Krieger!!!
    Oh and she's from Illinois so I might be biased there. ;-)

    • @omikronweapon
      @omikronweapon 5 ปีที่แล้ว +1

      there's a PODCAST with Holly? I don't know if I can take that :/

  • @TSBilliards86
    @TSBilliards86 5 ปีที่แล้ว +5

    Videos like this make me want to go back for my PhD in mathematics

  • @dazraf
    @dazraf 5 ปีที่แล้ว +2

    Thank you so much! Have a small request: can you please cover the Grassmannian? Thank you.

  • @JNCressey
    @JNCressey 5 ปีที่แล้ว +126

    All of a sudden "fourths" started to be "quarters" for the rest of the video.

    • @rosiefay7283
      @rosiefay7283 5 ปีที่แล้ว +25

      No, quarters started out being quarters, then became "fourths". Fortunately, normality was restored later.

    • @idjles
      @idjles 5 ปีที่แล้ว +6

      And zeds

    • @VndNvwYvvSvv
      @VndNvwYvvSvv 5 ปีที่แล้ว +3

      @@idjles Zombies should never have been involved.

    • @jshariff786
      @jshariff786 5 ปีที่แล้ว +12

      Umm yeah? There are frequently redundant, interchangeable ways of saying things. I'm sure you'll get over it eventually...

    • @greensteve9307
      @greensteve9307 5 ปีที่แล้ว +1

      Who cares?

  • @legendhero-eu1lc
    @legendhero-eu1lc 4 ปีที่แล้ว +2

    Thank you for the video! You friends are all super awesome!

  • @N0xium
    @N0xium 5 ปีที่แล้ว +9

    Christmas came early for all of us :]

  • @aidarosullivan5269
    @aidarosullivan5269 5 ปีที่แล้ว

    Hooray, Holly is back!!

  • @t.d.mich.7064
    @t.d.mich.7064 5 ปีที่แล้ว +8

    I got drunk and iterated all over the place, and the next day I was back to myself☺

  • @dleddy14
    @dleddy14 4 ปีที่แล้ว +1

    This is great! Thanks Holly.

  • @uniqueusername_
    @uniqueusername_ 5 ปีที่แล้ว +48

    You can't just end there! You gotta give us the proofs!

    • @numberphile
      @numberphile  5 ปีที่แล้ว +29

      No proofs but there is more detail in the second video on Numberphile2: th-cam.com/video/v4LWFzTyhpU/w-d-xo.html

    • @sasha6454
      @sasha6454 5 ปีที่แล้ว +38

      These proofs are left as exercises for the viewer.

    • @scowell
      @scowell 5 ปีที่แล้ว +16

      Unfortunately, there is not enough space in the margin... or this comment.

    • @randomdude9135
      @randomdude9135 5 ปีที่แล้ว +2

      @Nighthawk814 wtf

    • @ccgarciab
      @ccgarciab 5 ปีที่แล้ว

      @Nighthawk814 I'd imagine you ad a ^2 + c to the left side each time you try to prove a higher number of iterations?

  • @crackedemerald4930
    @crackedemerald4930 5 ปีที่แล้ว +1

    "what happens is that the numbers get really *big* or they get really _smol_"
    I loved the way she said that.

  • @pierreabbat6157
    @pierreabbat6157 5 ปีที่แล้ว +16

    Holly Krieger: Here's a 3-cycle of z=z²+c
    James Yorke: Period three implies chaos!

    • @Keldor314
      @Keldor314 5 ปีที่แล้ว +5

      Yup! A 3-cycle also implies all other length cycles exist, but it looks like you need to move past rational numbers to the set of real numbers for this to work.
      Finding their exact locations may be impossible, though, since it involves solving polynomials of order greater than 5.

    • @leapdrive
      @leapdrive 5 ปีที่แล้ว

      Pierre Abbat, did you mean: f(z)= z^2+c?

    • @Axacqk
      @Axacqk 5 ปีที่แล้ว

      @@Keldor314 You don't find the "exact locations" of irrational quadratic roots either. When we say "square root of c", what we really mean is "the number that is the unique positive root of x^2 - c"; the former is just a shorthand notation for the latter, and using shorthand notation does not increase the "exactness" of the value's description; it's still the _same_ description.
      There is another single parameter, polynomial-root-giving function, "the unique real root of x^5 + x + c", that can be used to write solutions to quintic polynomials in closed form. This function is called the Bring radical, and the shorthand notation is BR(c). It is as easy to compute with Newton's method as the square root.

    • @Keldor314
      @Keldor314 5 ปีที่แล้ว +2

      @@Axacqk Hrmm, true. Perhaps the algebraic numbers are too narrow to cover the concept of "exact locations". Or too broad.
      Although the order of the polynomials you have to solve increases exponentially with the length of the cycle since we're finding the solutions to f(f(f(...f(z))))=z. Assuming that there isn't some shortcut produced by by the fact that f(z)=z^2+c, we need to solve huge polynomials. 4-cycle gives a 16th order polynomial, 5-cycle gives a 32nd order polynomial, and so forth.
      Does a relatively simple root finding function exist for arbitrarily high order polynomials?

  • @danhalfhill9169
    @danhalfhill9169 4 ปีที่แล้ว

    I have no idea what this was about but I watched the whole thing! Fantastic!

  • @n3v3rg01ngback
    @n3v3rg01ngback 4 ปีที่แล้ว +10

    I like hitting the equal sign over and over on my calculator.

  • @dalelange5406
    @dalelange5406 5 ปีที่แล้ว +1

    What a great video. It taught me something fascinating about fractions I never knew. More please, and thanks Numberphile.

    • @oolveea
      @oolveea 5 ปีที่แล้ว

      can you please tell me what it is you find fascinating?

  • @asconblake
    @asconblake 5 ปีที่แล้ว +8

    There is a point for me watching these kind of numberphile videos where I can't listen anymore, because the video made my math(s) mind going hyperactive and I understand a WHOLE lot more at once *math(s) giggles*

  • @wafikiri_
    @wafikiri_ 2 ปีที่แล้ว

    Start with 2. Use C=-2. Next number is 2x2 - 2 = 2. Periodic!
    Start with 3. Use C=-6. Next number is 3x3 - 6 = 3. Periodic!
    Start with 0. Use C=-1. Series is 0, -1, 0, -1, ... Periodic!
    Start with 1. Use C=-3. Series is 1, -2, 1, -2, .... Periodic!
    Start with S. Next number is S^2 + C, then next is (S^2 + C)^2 + C =S^4+2CS^2 +C + C^2, we want it to be equal to S. So, S^4 +2CS^2 -S +C^2 + C=0, or C^2+ (2S^2+1)C + (S^4 - S) = 0. Two roots. This is how I got lines 3 and 4 above, others are possible. Periodic!
    Maybe a period longer than 2 can be obtained. Too high a grade for my little time available.

  • @TheBaggyT
    @TheBaggyT 5 ปีที่แล้ว +5

    I am very appreciative of Numberphile videos, but something I keep asking myself is: why do they always write on paper instead of using a whiteboard? Isn't this just a waste of paper?
    This is a genuine question - if someone can answer this, I'd appreciate it! Thanks.

    • @skipfred
      @skipfred 4 ปีที่แล้ว

      I don't know but I think it's just tradition. They're writing on what appears to be recycled paper anyway (from the color and texture). The amount of paper they're going through is nothing compared to even a small company.

    • @TheBaggyT
      @TheBaggyT 4 ปีที่แล้ว

      @@skipfred I get that. But comparing the amount of paper isn't really the point... the vast majority of similar videos use other technology (whiteboards, tablets, etc.) and have zero paper usage.

    • @MarcusCactus
      @MarcusCactus 3 ปีที่แล้ว

      My thesis director told me: "Never be afraid of wasting paper." One among the reasons being that chalk- or whiteboards are not permanent. Another being that you should not clutter your next equations in the blank spaces between previous ones. A third would be that limitations are bad for free science.

    • @TheBaggyT
      @TheBaggyT 3 ปีที่แล้ว

      @@MarcusCactus I get that when you're doing research, or working towards something big like a thesis. But if I'm making a video about something I already know about (which I assume these people are, that they haven't just thought of the idea on the spot), I would use a whiteboard because there's no need to keep a more permanent record. If you organise a whiteboard properly, there's no need to write new equations in the space between others. And how is a whiteboard a limitation?!?

  • @vishalmishra3046
    @vishalmishra3046 5 ปีที่แล้ว

    With complex numbers, cycle of any length is possible. It is just a matter of solving a high order polynomial equation and getting c = f(z). Hence a cycle of 4 is easily computable by solving a 4th order polynomial equation. Higher order polynomial equations often require numeric analysis to solve them, so z and c become approximate, instead of exact transcendental expressions.

  • @KurtRichterCISSP
    @KurtRichterCISSP 4 ปีที่แล้ว +8

    The Amy Adams of maths 😁

  • @jdlech
    @jdlech 5 ปีที่แล้ว

    To me, the most fascinating thing about fractions is that you can easily and rationally describe numbers with perfect precision when decimals fail. 2/3, for instance. There are still numbers, such as Pi, which both methods of expression fail. But there are many times which expressing a fraction is clearly better than a decimal. Even so, I often see people expressing a decimal when a fraction would do better.

  • @quantumhealing341
    @quantumhealing341 5 ปีที่แล้ว +3

    Holly is a great teacher!

  • @tavit8
    @tavit8 3 ปีที่แล้ว +1

    Very cool. One question, what are the implications of returning to the original number, does this have a real world application?

  • @OlafKnolaf
    @OlafKnolaf 5 ปีที่แล้ว +127

    It can be done with 4 using complex numbers. I've found a remarkable proof of this fact, but there is not enough space in the comment section to write it.

    • @stefandries0
      @stefandries0 5 ปีที่แล้ว +8

      Google docs + the link maybe?

    • @yashthakre8106
      @yashthakre8106 5 ปีที่แล้ว +1

      I would love to hear that

    • @tarkus44
      @tarkus44 5 ปีที่แล้ว +36

      hommage a Fermat?

    • @RalphDratman
      @RalphDratman 5 ปีที่แล้ว +17

      It will be proved in about 400 years

    • @x714n0____
      @x714n0____ 5 ปีที่แล้ว +1

      🤣🤣🤣

  • @hodymcsackschweid5012
    @hodymcsackschweid5012 5 ปีที่แล้ว +1

    I would be interested in hearing about the proofs, showing which iterations work and which don’t. For example showing why four iterations isn’t possible.

  • @Ryoka1
    @Ryoka1 5 ปีที่แล้ว +33

    I cant be the only person who sees Amy Adams

    • @petersellers9219
      @petersellers9219 4 ปีที่แล้ว +1

      I'm still trying to calculate the number of freckles. A teaser!

  • @robert33232
    @robert33232 5 ปีที่แล้ว +1

    Is it hard for you to understand each other's "can't"? 😃 7:12

  • @timohuber536
    @timohuber536 5 ปีที่แล้ว +7

    I‘d really love to see a 3b1b-Video on this!

  • @williamtilt8991
    @williamtilt8991 5 ปีที่แล้ว +1

    I just stumbled onto this channel and noticed pi million subscribers. I won’t be subscribing, don’t want to mess that up. Cheers.

  • @joshuagoodman2620
    @joshuagoodman2620 5 ปีที่แล้ว +5

    Has chalkboard in background
    Uses paper towel from school bathroom

  • @steve--smith
    @steve--smith 3 ปีที่แล้ว

    I wish I presented as well as Holly. Clear, concise, memorable.... and talented.

  • @leehutchinson7005
    @leehutchinson7005 5 ปีที่แล้ว +75

    There were no people as interesting as this when I did maths at uni

    • @metalhos
      @metalhos 5 ปีที่แล้ว +24

      you mean, no grrls?

    • @okie9025
      @okie9025 5 ปีที่แล้ว +2

      @@metalhos :DDDDDDDD

    • @finlayhutchinson7370
      @finlayhutchinson7370 5 ปีที่แล้ว +2

      Dad

    • @An.Individual
      @An.Individual 5 ปีที่แล้ว +6

      "interesting". I know what you mean, nudge nudge wink wink.

    • @TVIDS123
      @TVIDS123 5 ปีที่แล้ว +3

      It's Only Me did you see the size of the iterations on that?!

  • @steveyankou4144
    @steveyankou4144 5 ปีที่แล้ว +1

    Just watched this twice first thing in the morning. Thanks for turning my brain on.

    • @xway2
      @xway2 5 ปีที่แล้ว

      @Max Chatterji America, probably? Certainly on a sunday anyways.

  • @Sillu129
    @Sillu129 5 ปีที่แล้ว +19

    Kinda reminds me the circle of fifths..... ;)

    • @Ryuuuuuk
      @Ryuuuuuk 5 ปีที่แล้ว +1

      Yes, my mind immediately made the same link, interesting.

  • @hexane360
    @hexane360 5 ปีที่แล้ว +1

    It's interesting how the three numbers are equally spaced on the number line (-7/4, -1/4, and 5/4).

  • @ronniechilds2002
    @ronniechilds2002 5 ปีที่แล้ว +62

    "ZED", you said zed. You've gone native.

    • @MrHarsh3600
      @MrHarsh3600 5 ปีที่แล้ว +16

      That's how it's pronounced. Americans say it wrong.

    • @huawafabe
      @huawafabe 5 ปีที่แล้ว +6

      @@MrHarsh3600 As a german, i also love it. We don't really differentiate between 's' sounds and 'z' sounds, so it's incredibly hard to distinguish 'c' and 'z'.

    • @nassyl1
      @nassyl1 5 ปีที่แล้ว +6

      @Maximal's Personal Profile Pointing it out, however, makes you dull at parties.

    • @Petertronic
      @Petertronic 5 ปีที่แล้ว +3

      Holly talks about that in the podcast

    • @jb76489
      @jb76489 5 ปีที่แล้ว +4

      LolGuy you don’t understand how dialects/language work

  • @rianby64
    @rianby64 5 ปีที่แล้ว +1

    Beautiful! This video made my week by -7/4 times!

  • @ditrixgenesis781
    @ditrixgenesis781 5 ปีที่แล้ว +5

    Numberphile comments were the last place I thought I'd see thirst comments

    • @jshariff786
      @jshariff786 5 ปีที่แล้ว +1

      Why?? There is significant overlap between the set of math nerds and the set of desperate men.

  • @mtmath1123
    @mtmath1123 5 ปีที่แล้ว

    Some people think there’s nothing anymore to solve in maths, but even this kind of naive question is way difficult and actually enables us to go further like chaos and fractal. Sounds great.

  • @OlbaidFractalium
    @OlbaidFractalium 5 ปีที่แล้ว +4

    Z->Z^2 +C is really mysterious formula.

    • @vikraal6974
      @vikraal6974 5 ปีที่แล้ว +2

      Laughs in Mandelbrot photo

  • @maxducoudray
    @maxducoudray 4 ปีที่แล้ว

    Krieger is awesome! So much joy for math.

  • @jroemling
    @jroemling 5 ปีที่แล้ว +9

    1 View! :-D And that with one of my very favorite channels!

  • @chloe-un9cn
    @chloe-un9cn 5 ปีที่แล้ว

    you can also get loops for any integer z’s if c = (z-z^2)
    ie: z=2,c=-2 (2^2-2=2)
    z=3,c=-6 (3^2-6=3)
    i guess this would work for any values of c and z that satisfy the equation, but i just noticed it first for integers

  • @justin423
    @justin423 5 ปีที่แล้ว +4

    Is there a reason that every Numerphile video seems to have the math drawn on recycled paper bags or butcher's paper?

    • @larryscott3982
      @larryscott3982 5 ปีที่แล้ว

      Yes.

    • @Cofcos
      @Cofcos 5 ปีที่แล้ว

      It's cheap and easily recycled unbleached paper for when you go through a lot of paper but don't need it to be the most presentable or meant for archival.

    • @larryscott3982
      @larryscott3982 5 ปีที่แล้ว +1

      Cofcos
      I think it’s just a bit fun looking. Not a whiteboard, not a chalkboard. More fun than pencil and paper, it’s a look.
      “Back of the envelope calculations”.

  • @IslandCave
    @IslandCave 5 ปีที่แล้ว

    If we extend to complex numbers, then we can get any n steps where n is a positive whole number, by starting with: cos(2pi / n) + sin(2pi / n) i, and multiplying by cos(2pi / n) + sin(2pi / n)i each time, and in n steps we would get back to 1. That is it would take n steps to go around the unit circle centered at 0 on the complex plane, 1 / nth rotations at a time.

  • @pradhyumnchoudhary7383
    @pradhyumnchoudhary7383 5 ปีที่แล้ว +13

    Amy Adams at it again!

  • @rikschaaf
    @rikschaaf 3 ปีที่แล้ว +1

    So the maximum cycle for integers is 1, the maximum KNOWN cycle for fractions is 3, what is the maximum cycle for real and complex numbers?