Euler's brilliant solution to the Basel problem vs Cauchy's cool residue theorem approach

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น • 44

  • @maths_505
    @maths_505  ปีที่แล้ว

    You can follow me on Instagram for write ups that come in handy for my videos:
    instagram.com/maths.505?igshid=MzRlODBiNWFlZA==
    If you like the videos and would like to support the channel:
    www.patreon.com/Maths505

  • @ΙΗΣΟΥΣΧριστος-θ2γ
    @ΙΗΣΟΥΣΧριστος-θ2γ ปีที่แล้ว +6

    Suiiii.He did it.Great presentation plus u found a way to combine the basel problem with complex analysis. At this point i may as well say thank you for ur service man ur a legend😂

  • @Galileosays
    @Galileosays ปีที่แล้ว +3

    Great. Nice to see how the the residue theorem can be applied to Basel's problem.

  • @quentinrenon9876
    @quentinrenon9876 ปีที่แล้ว +10

    The second one is so wild!

  • @realcirno1750
    @realcirno1750 ปีที่แล้ว +1

    the fact that f(z)cot(pi z) has a residue of f(n) at integers where f has no pole is a genius insight that paves the way for so many summation problems (along with the fact that the sum of the residues is 0 if f is O(1/z^2) which this vid seems to leave out)
    i think cauchy wins, his method is more rigorous and generalizable, the class of series that can be evaluated with hadamard product is much smaller than those that can be evaluated with cotangent summation

  • @anthony9656
    @anthony9656 ปีที่แล้ว +1

    Great presentation, thanks! On the Basil problem, there is a different more generalized approach due to Euler in the “spectacular sums” section of the book “The Calculus Gallery”. Definitely worth checking out.

  • @timemasterdm2462
    @timemasterdm2462 ปีที่แล้ว +2

    A beautiful pair of solutions.

  • @MrWael1970
    @MrWael1970 ปีที่แล้ว

    Very nice proof. But when you substitute by k = 1 at the first method, you forget to raise the power of (-1) to 1. Thank you very much for your amazing effort.

  • @JirivandenAssem
    @JirivandenAssem ปีที่แล้ว

    3:22 why not multiply the pix^3 term with the x^2 terms??? u are ignoring the x^5 terms?

    • @maths_505
      @maths_505  ปีที่แล้ว

      Multiply out the first few terms....you'll see why....

    • @jurgensand9201
      @jurgensand9201 ปีที่แล้ว

      I still do not understand: all x^5 terms are positive and do not sum to 0; correspondingly all x^7 terms are negativ and do not sum to 0, etc. So why do you ignore them?

    • @jurgensand9201
      @jurgensand9201 ปีที่แล้ว

      I understand now: the higher potential terms of x do not cancel out, you simply ignore them in your calculation. Finally you only compare the x^3 term with the x^3 term of Fourier expansion of the sin function. So, the corresponding comparations of the x^5, x^7 and so on terms could give more results ...

  • @saulmendoza1652
    @saulmendoza1652 ปีที่แล้ว

    Very neat!!

  • @Ghaith7702
    @Ghaith7702 ปีที่แล้ว +1

    this is verry intresting but a bit too much for me unfortunatly awesome videos btw

  • @herbertdiazmoraga7258
    @herbertdiazmoraga7258 ปีที่แล้ว +2

    FUCKING LOVE COMPLEX VARIABLE MAAAAN

  • @Super-gt9lk
    @Super-gt9lk ปีที่แล้ว

    Hello, is it possible to integrate x/(e^x-1) from x=0 to x=infty WITHOUT using series expansion? Context: I am collecting the ways to compute sum(1/n^2). After Laplace transform and MCT, I encounter this integral, but it would make me a clown if I use series expansion since it just goes all the way back sum(1/n^2).

    • @tzebengng9722
      @tzebengng9722 ปีที่แล้ว

      There are many ways to determine the sums. You might like to check out my calculus web at firebase for a telescopic series with simple trigonometric integrals. It is much more elegant.

    • @Super-gt9lk
      @Super-gt9lk ปีที่แล้ว

      @@tzebengng9722 Although I couldn't find the desired answer there (since I am trying the technique in the paper I recently read, which is about evaluating infinite sum via Laplace transform), your website is extremely informative and would be helpful for my further studying. So...thanks a lot, I surely would check your website from time to time in the future.

    • @tzebengng9722
      @tzebengng9722 10 หลายเดือนก่อน

      Yes, it is possible. You can re-express the integral in terms of log and find a suitable function to apply the differentiation under the integral sign. Check my calculus web again, I will the answer soon.
      @@Super-gt9lk

    • @tzebengng9722
      @tzebengng9722 10 หลายเดือนก่อน

      With a change of variable, you can show that the integral is equal to 2/3 of the integral of ln(x)/(x^2-1) from 0 to infinity. Then you can apply differentiation under the integration sign to evaluate this integral. Use the obvious function 1/2 of ln(1+t^2(x^2-1))/(x^2-1). For details see my calculus web.

  • @aravindakannank.s.
    @aravindakannank.s. ปีที่แล้ว

    all videos are released at midnight in India

  • @mokhtarmougai5088
    @mokhtarmougai5088 ปีที่แล้ว +2

    that "It's Euler" reason can shut every hater mouth 💀

  • @PotentialEnergy-ew1js
    @PotentialEnergy-ew1js ปีที่แล้ว +1

    Make a video how to learn maths... you're really impressive 🙏

    • @maths_505
      @maths_505  ปีที่แล้ว

      Well the best way to learn it is to actually do it.
      Nd in case you're looking for resources then go for MIT and Harvard lectures on TH-cam

    • @thewolverine7516
      @thewolverine7516 ปีที่แล้ว

      ​@@maths_505What about your promise? When are your full theory lectures gonna come?

    • @maths_505
      @maths_505  ปีที่แล้ว

      @@thewolverine7516 probably September.
      Thing is I really want them to be good so everytime I write up a lecture I end up redoing the whole thing cuz I feel it's not good enough. So its gonna take me a while to get em ready. Plus alot of work goes into making content for this channel so the routine is pretty tough these days.

    • @maths_505
      @maths_505  ปีที่แล้ว

      @@thewolverine7516 I'll probably just start with one or two courses. Specifically complex analysis and differential equations and I'll build up from there

    • @thewolverine7516
      @thewolverine7516 ปีที่แล้ว

      @@maths_505 Take your time, I believe when you launch it, it's gonna be extremely resourceful.

  • @zeggwaghismail827
    @zeggwaghismail827 ปีที่แล้ว

    Try to solve it using polynomials in cot^2.

  • @anupamamehra6068
    @anupamamehra6068 ปีที่แล้ว

    hi math 505 i have a question for you: solve the indefinite integral: ∫ x^2 squareroot( 36 x^2 - 1) dx

  • @saulmendoza1652
    @saulmendoza1652 ปีที่แล้ว

    The link to the paper is dead

  • @Predaking4ever
    @Predaking4ever ปีที่แล้ว

    Basel Wars (in the voice of Beast Wars)!!!

  • @danielrosado3213
    @danielrosado3213 ปีที่แล้ว +2

    epic

  • @عليعقل-ص6ث
    @عليعقل-ص6ث ปีที่แล้ว

    Second one best

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว +1

    Ok coool

    • @maths_505
      @maths_505  ปีที่แล้ว

      grazie per aver digitato in inglese questa volta😂

    • @giuseppemalaguti435
      @giuseppemalaguti435 ปีที่แล้ว

      @@maths_505 quando scrivo in italiano, scrivo numeri e formule...

  • @cycklist
    @cycklist ปีที่แล้ว

    Zed