3 RIDICULOUSLY AWESOME infinite zeta series!!!

แชร์
ฝัง
  • เผยแพร่เมื่อ 12 ม.ค. 2025

ความคิดเห็น • 32

  • @MathOrient
    @MathOrient ปีที่แล้ว +10

    This video is absolutely captivating! The zeta function has always held a special place in my heart. The way these series expansions gracefully unfold truly captures the essence of its mesmerizing properties. Thank you for sharing this intriguing exploration of the zeta function and its series expansions.

  • @thomasrichard7054
    @thomasrichard7054 ปีที่แล้ว +8

    Nice method and video! Can you evaluate the last sum when replacing n by n^2 or n^3 or n^4? I did so, using Maple‘s identify routine.

    • @maths_505
      @maths_505  ปีที่แล้ว +3

      Another derivative will give me something related to Apery's constant and for n^3 we'll have something related to zeta(4) which has a nice closed form.

    • @mokhtarmougai5088
      @mokhtarmougai5088 ปีที่แล้ว +1

      ​@@maths_505 if I understand that properly, you can get zeta of m+1 by computing n^m or am I wrong?

  • @manstuckinabox3679
    @manstuckinabox3679 ปีที่แล้ว +1

    Maths 505 reminding us that dealing with sums can be fun and not always cumbersome.

  • @MrWael1970
    @MrWael1970 ปีที่แล้ว +1

    Very good tricks and smart solutions. Again you are really talented.

    • @maths_505
      @maths_505  ปีที่แล้ว +2

      Thank you Professor

  • @mariokraus6965
    @mariokraus6965 ปีที่แล้ว +1

    Fascinating video :-) Could you tell please the link to the gamma'(1/2) proof?

    • @maths_505
      @maths_505  ปีที่แล้ว +2

      Check out the playlist for Feynman's trick. There you'll find the integral of e^(-x^2)lnx from zero to infinity. I've evaluated a few derivatives of the gamma function there

    • @mariokraus6965
      @mariokraus6965 ปีที่แล้ว +1

      @@maths_505 Great! Many thanks 🙂

  • @GeoffryGifari
    @GeoffryGifari ปีที่แล้ว +5

    wait, can we always switch the order of two sums like that?

    • @gabriel_talih
      @gabriel_talih ปีที่แล้ว +4

      You have to make sure they are converging first, by fubini’s theorem, but he doesn’t mention it in the video cause we assume the sums are converging.
      A way you can show it is we know that zeta(n)=2. So we can write out the same sum S, bounded by a second summation S_1, replacing the zeta function with 2, and showing that the new upper bound sum S_1 exists, hence the original sum S does too.

    • @GeoffryGifari
      @GeoffryGifari ปีที่แล้ว +1

      @@gabriel_talih ah i see. what about the summation index? i was thinking that the order of summation can only be interchanged if the indices are independent; an index can't be the limit of summation of another one

    • @aldomorelli6379
      @aldomorelli6379 ปีที่แล้ว +1

      @@GeoffryGifari I think the indices are independent of one another? We range over all k>=1 and n>=1.

    • @GeoffryGifari
      @GeoffryGifari ปีที่แล้ว

      @@aldomorelli6379 yes, it is in this case

  • @neilgerace355
    @neilgerace355 ปีที่แล้ว +1

    2:46 What happened to the exponent k? I don't understand that.

    • @rebel2358
      @rebel2358 ปีที่แล้ว

      It’s not an exponent he’s multiplying the top and bottom by k

    • @neilgerace355
      @neilgerace355 ปีที่แล้ว

      ​@@rebel2358 thanks, I didn't understand what "expanding" meant.

  • @Pavan_Gaonkar
    @Pavan_Gaonkar ปีที่แล้ว +2

    Hay can you please suggest me a good book to practice calculus? Foreign author would be great...

    • @maths_505
      @maths_505  ปีที่แล้ว

      What level of calculus?
      Cal 1, 2 or 3

    • @Pavan_Gaonkar
      @Pavan_Gaonkar ปีที่แล้ว

      @@maths_505 for integration and vector calculus... I guess it is calculus 2&3

  • @ahsgdf1
    @ahsgdf1 ปีที่แล้ว

    Thank you for the nice problems and their solutions. I found it easier to start with letting 1/k^(n+1) = 1/n! int_{0}^{oo} t^n e^(-t k) dt. Then doing the double sum gives the integrals I1 = int_{0..oo} (e^(t/2)-1)/(e^t - 1) dt = ln(4), I2 = int_{0..oo} (1-e^(-t/2)-1)/(e^t - 1) dt = 2-ln(4), and I3 = \frac{1}{2} \int_0^{\infty } \frac{t e^{t/2}}{e^t-1} \, dt = pi^2/4, respectively. Now I1 and I2 were elementary (after an obvious substitution), I3 leads to the sum of the inverse of odd squares. No mention of the the polygamma function and Euler gamma is necessary.

  • @templateorman3127
    @templateorman3127 ปีที่แล้ว +1

    Hello! Can you please tell what app you use to write on?

    • @aravindakannank.s.
      @aravindakannank.s. 9 หลายเดือนก่อน

      Samsung notes😊
      in this period he used his phone
      yeah I know he is a madman😅

  • @mokhtarmougai5088
    @mokhtarmougai5088 ปีที่แล้ว +3

    My request has been accepted 🎉😊

  • @markus_park
    @markus_park ปีที่แล้ว +1

    How can we be sure that the sum of zeta(n + 1) * x ^ n converges?

    • @mars_titan
      @mars_titan ปีที่แล้ว

      |x|

    • @slavinojunepri7648
      @slavinojunepri7648 วันที่ผ่านมา

      ​@@mars_titanCan you please elaborate? What convergence rule are you referring to?

    • @slavinojunepri7648
      @slavinojunepri7648 วันที่ผ่านมา

      ​@@mars_titanI see exactly what you mean now. Zeta(n+1) is bounded above by 2, allowing the series with zeta(n+1) coefficients to be in turn bounded above by twice the geometric series with common ratio x, which evidently converges since |x|

    • @mars_titan
      @mars_titan วันที่ผ่านมา

      ​@@slavinojunepri7648 exactly!