CAN Education
CAN Education
  • 506
  • 646 002
⚡Full-Wave Rectifier - LC Filter & Resistive Load ⚡ Power Electronics Calculations & MATLAB/Simulink
In this video, we will discuss the full-wave rectifier with LC filter and resistive load. We will determine the conduction mode of the circuit and calculate the average output voltage and average output current. We will workout the calculations step by step and verify our calculations using simulations in MATLAB/Simulink. #MATLAB #simulink
🎯 Outline:
⏩00:00:00 Introduction
⏩00:00:20 Problem Description
⏩00:01:27 Calculations
⏩00:05:35 Simulations MATLAB/Simulink
👉 More Power Electronics: th-cam.com/play/PLuUNUe8EVqlkTs7tJwfkSq7Pj036zUyug.html
⭐ If you have questions or comments, please let me know. Help us to reach more people. Like and share this video. Subscribe to our channel: th-cam.com/users/canbijles
⚡ CAN Education - Tutoring in Electrical Engineering, Analog Electronics, Power Electronics, Control Systems, and Math Courses
⭐ For questions, collaboration or consulting 👇
📧 can.mehmet.tr@gmail.com
☎️ +31616179479
🌐 www.canbijles.nl
#fullwaverectifier #rectifier #LC #filter #power #electronics #analog #electriccircuits #rms #average #current #voltage #resistor #inductor #impedance #load #source #battery #analog #powerelectronics #electriccircuits #circuits #buckboost #converter #discontinuous #mode #powerelectronics #squarewave #power #electronics #analog #electriccircuits #rms #average #current #voltage #resistor #inductor #impedance #load #source #battery #analog #powerelectronics #electriccircuits #circuits #THD #totalharmonicdestortion #powermosfet #RLC #impedance
Copyright © ir. Mehmet Can
No part of this video and text may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the owner.
มุมมอง: 232

วีดีโอ

⚡DC-DC Buck-Boost Converter - Discontinuous Conduction Mode 🔋 Power Electronics Calculation & MATLAB
มุมมอง 21314 ชั่วโมงที่ผ่านมา
In this video, we will discuss the DC-DC buck-boost converter in its most basic form without feedback. The buck-boost converter will be in open-loop and works in discontinuous conduction mode (DCM). First, we will check the conduction mode of the circuit. Then, using the given values for this circuit, we will calculate the output voltage, output current, and inductor ripple current. We will wor...
⚡DC-DC Buck-Boost Converter - Continuous Conduction Mode 🔋 Power Electronics Calculation & MATLAB
มุมมอง 34614 วันที่ผ่านมา
In this video, we will discuss the DC-DC buck-boost converter in its most basic form without feedback. The buck-boost converter will be in open-loop and works in continuous conduction mode (CCM). First, we will check the conduction mode of the circuit. Then, using the given values for this circuit, we will calculate the output voltage, output current, and inductor ripple current. We will workou...
⚡ DC-DC Zeta Converter Design 🔋 Power Electronics ⭐ Calculations & MATLAB/Simulink Simulations ⭐
มุมมอง 18314 วันที่ผ่านมา
In this video, we will discuss a design of a DC-DC Zeta Converter.. The operation of the Zeta converter is similar to the Ćuk converter and SEPIC. The Zeta converter can produce an output voltage that is either greater or less than the input voltage but with no polarity reversal. Emphasizing an open-loop configuration, the converter will function in the continuous conduction mode (CCM). Using t...
⚡ DC-DC Boost Converter - Discontinuous Conduction Mode 🔋 Power Electronics ⭐ Calculation & MATLAB
มุมมอง 17328 วันที่ผ่านมา
In this video, we will discuss a simple DC-DC boost converter in its most basic form without feedback. The boost converter will be in open-loop and in works in discontinuous conduction mode (DCM). First, we will check the conduction mode of the circuit. Then, using the given values for this circuit, we will calculate the output voltage, output current, and inductor ripple current. We will worko...
⚡ DC-DC Buck Converter Design 🔋 Power Electronics ⭐ Calculations & MATLAB/Simulink Simulations ⭐
มุมมอง 252หลายเดือนก่อน
In this video, we will discuss the design of a DC-DC buck converter. The buck converter will be in open-loop and in works in continuous conduction mode (CCM). Given the specifications for the output voltage, output current, and output ripple voltage, we will calculate required the component values. We will workout the calculations step by step and verify our calculations using simulations in MA...
Chebyshev Response 1 dB Ripple 📉 LC Ladder Lowpass Filter Design 4th Order ☀️ Unequal Source & Load
มุมมอง 78หลายเดือนก่อน
In this video, we will discuss the LC ladder filter design having a Chebyshev response 1 dB ripple characteristics. The designed circuit has unmatched source resistance and load resistance, which means they are not equal to each other. This requires that the coefficients for the LC filter design be adjusted. This will be discussed in this video too. The designed filter is a passive fourth-order...
Butterworth Response Bandstop Filter Design ☀️ Geffe's Algorithm ⭐ Multiple-Feedback Op-Amp Circuit
มุมมอง 94หลายเดือนก่อน
In this video, we will discuss the Bandstop filter design having a Butterworth response characteristics. The design is carried out using the Geffe's algorithm. The Bandstop filter circuit is realized using a multiple-feedback active filter circuit (Bainter circuit). The designed filter is an active fourth-order Bandstop filter. We will workout the design step by step and verify our calculations...
Chebyshev Response 1 dB Ripple 📉 LC Ladder Lowpass Filter Design 3rd Order ☀️ Unequal Source & Load
มุมมอง 82หลายเดือนก่อน
In this video, we will discuss the LC ladder filter design having a Chebyshev response 1 dB ripple characteristics. The designed circuit has unmatched source resistance and load resistance, which means they are not equal to each other. This requires that the coefficients for the LC filter design be adjusted. This will be discussed in this video too. The order of the filter is 3. The designed fi...
LC Ladder Bandstop Filter Design | Elliptic (Cauer) Response - 3rd Order | Example 5
มุมมอง 84หลายเดือนก่อน
In this video, we will discuss the LC ladder filter design having an Elliptic (Cauer) response characteristics. Elliptic (Cauer) Response have ripple both in the passband and stopband region, and is the most efficient filter response in terms of filter order. So, you can achieve the same filtering performance with a lower order filter compared to other filter responses. The designed filter is a...
LC Ladder Bandpass Filter Design | Elliptic (Cauer) Response - 3rd Order | Example 4
มุมมอง 70หลายเดือนก่อน
In this video, we will discuss the LC ladder filter design having an Elliptic (Cauer) response characteristics. Elliptic (Cauer) Response have ripple both in the passband and stopband region, and is the most efficient filter response in terms of filter order. So, you can achieve the same filtering performance with a lower order filter compared to other filter responses. The designed filter is a...
Chebyshev Response Bandpass Filter Design ☀️ Geffe's Algorithm ⭐ Multiple Feedback Op-Amp Circuit
มุมมอง 108หลายเดือนก่อน
In this video, we will discuss the bandpass filter design having a Chebyshev response characteristics. The design is carried out using the Geffe's algorithm. The bandpass filter circuit is realized using a multiple-feedback active filter circuit (Delyiannis-Friend circuit). The designed filter is an active sixth-order bandpass filter. We will workout the design step by step and verify our calcu...
Butterworth Response Bandpass Filter Design ☀️ Geffe's Algorithm ⭐ Multiple-Feedback Op-Amp Circuit
มุมมอง 188หลายเดือนก่อน
In this video, we will discuss the bandpass filter design having a Butterworth response characteristics. The design is carried out using the Geffe's algorithm. The bandpass filter circuit is realized using a multiple-feedback active filter circuit (Delyiannis-Friend circuit). The designed filter is an active fourth-order bandpass filter. We will workout the design step by step and verify our ca...
LC Ladder Highpass Filter Design | Elliptic (Cauer) Response - 3rd Order | Example 3
มุมมอง 65หลายเดือนก่อน
In this video, we will discuss the LC ladder highpass filter design having an Elliptic (Cauer) Response characteristics. The filter is 3rd order. We will use lowpass to highpass filter circuit transformation and discuss two different filter circuit arrangements (minimum capacitor count and minimum inductor count). We will use the elliptic response table with normalized element values to calcula...
LC Ladder Lowpass Filter Design | Elliptic (Cauer) Response - 5th Order | Example 2
มุมมอง 620หลายเดือนก่อน
In this video, we will discuss the LC ladder lowpass filter design having an Elliptic (Cauer) Response characteristics. The filter is 5th order. We will use the elliptic response table with normalized element values to calculate the required component values in the final design. Elliptic (Cauer) Response have ripple both in the passband and stopband region, and is the most efficient filter resp...
LC Ladder Bandstop Filter Design ✨️ Bessel Response - 5th Order ☀️ Example 4
มุมมอง 107หลายเดือนก่อน
LC Ladder Bandstop Filter Design ✨️ Bessel Response - 5th Order ☀️ Example 4
LC Ladder Bandpass Filter Design ✨️ Bessel Response - 2nd Order ☀️ Example 3
มุมมอง 2042 หลายเดือนก่อน
LC Ladder Bandpass Filter Design ✨️ Bessel Response - 2nd Order ☀️ Example 3
MOSFET Differential Amplifier with Active Load & Full Transistor Cascode Current Source ☀️ Example 6
มุมมอง 3252 หลายเดือนก่อน
MOSFET Differential Amplifier with Active Load & Full Transistor Cascode Current Source ☀️ Example 6
MOSFET Differential Amplifier - Resistive Load & Full Transistor Cascode Current Source ☀️ Example 5
มุมมอง 4532 หลายเดือนก่อน
MOSFET Differential Amplifier - Resistive Load & Full Transistor Cascode Current Source ☀️ Example 5
BJT Cascode Current Source | Calculations & SPICE Simulations | Example 8
มุมมอง 3092 หลายเดือนก่อน
BJT Cascode Current Source | Calculations & SPICE Simulations | Example 8
⚡ DC-DC SEPIC Converter Design 🔋 Power Electronics ⭐ Calculations & MATLAB/Simulink Simulations
มุมมอง 2232 หลายเดือนก่อน
⚡ DC-DC SEPIC Converter Design 🔋 Power Electronics ⭐ Calculations & MATLAB/Simulink Simulations
Servo Motor Position Control System ⭐ Part 1: Closed-Loop Response with Unity-Gain Control
มุมมอง 3832 หลายเดือนก่อน
Servo Motor Position Control System ⭐ Part 1: Closed-Loop Response with Unity-Gain Control
⚡ DC-DC Buck Converter Controller Design using Type 2 Compensator ☀️ Calculations & MATLAB & TINA-TI
มุมมอง 9372 หลายเดือนก่อน
⚡ DC-DC Buck Converter Controller Design using Type 2 Compensator ☀️ Calculations & MATLAB & TINA-TI
Butterworth Response LC Ladder Lowpass Filter Design☀️Unequal Source & Load Resistance | TINA SPICE
มุมมอง 2042 หลายเดือนก่อน
Butterworth Response LC Ladder Lowpass Filter Design☀️Unequal Source & Load Resistance | TINA SPICE
⚡ DC-DC Ćuk (Cuk) Converter Design 🔋 Power Electronics ⭐ Calculations & MATLAB/Simulink Simulations
มุมมอง 2262 หลายเดือนก่อน
⚡ DC-DC Ćuk (Cuk) Converter Design 🔋 Power Electronics ⭐ Calculations & MATLAB/Simulink Simulations
⚡ DC-DC Buck Converter Controller Design using Type 3 Compensator ☀️ Calculations & MATLAB & TINA-TI
มุมมอง 1.3K2 หลายเดือนก่อน
⚡ DC-DC Buck Converter Controller Design using Type 3 Compensator ☀️ Calculations & MATLAB & TINA-TI
⚡ DC-DC Buck-Boost Converter Design 🔋 Power Electronics Calculations & MATLAB/Simulink
มุมมอง 7362 หลายเดือนก่อน
⚡ DC-DC Buck-Boost Converter Design 🔋 Power Electronics Calculations & MATLAB/Simulink
⚡DC-DC Boost Converter Design 🔋 Power Electronics Calculations & MATLAB/Simulink
มุมมอง 4722 หลายเดือนก่อน
⚡DC-DC Boost Converter Design 🔋 Power Electronics Calculations & MATLAB/Simulink
⚡ DC-DC Buck Converter Design Part 2 ⚡ - Controller Design - Calculations & MATLAB & TINA-TI
มุมมอง 9293 หลายเดือนก่อน
⚡ DC-DC Buck Converter Design Part 2 ⚡ - Controller Design - Calculations & MATLAB & TINA-TI
⚡DC-DC Buck Converter - Continuous Conduction Mode 🔋 Power Electronics | Calculation & TINA-TI Spice
มุมมอง 2613 หลายเดือนก่อน
⚡DC-DC Buck Converter - Continuous Conduction Mode 🔋 Power Electronics | Calculation & TINA-TI Spice

ความคิดเห็น

  • @Prashant_Sharma_
    @Prashant_Sharma_ 2 วันที่ผ่านมา

    Hi sir, where can I get the PPT of the noise lecture series

    • @CanBijles
      @CanBijles 2 วันที่ผ่านมา

      The resources for the videos will be placed in the description of the videos as soon as possible.

  • @jadondewey1237
    @jadondewey1237 2 วันที่ผ่านมา

    For the loop bode plot, why does the phase shift start at -90 degrees at low frequencies instead of -270 degrees or +90 degrees. Shouldn't the negative in the Type-III Compensator transfer function (due to the inverting opamp) cause an additional -180 degree phase shift on top of the -90 degree phase shift from the pole at the origin?

    • @jadondewey1237
      @jadondewey1237 2 วันที่ผ่านมา

      Okay I saw in a comment you mentioned the calculations are different between MATLAB and Tina-TI. Do I need to account for the 180-degree phase shift in MATLAB, because having a phase shift starting at 90 degrees is confusing when calculating stability margins.

    • @CanBijles
      @CanBijles 2 วันที่ผ่านมา

      ​@@jadondewey1237 Thanks for your message. -90 degrees + -180 degrees is in totaal -270 degrees, but can be also written as +90 degrees by adding a 360 degrees.

  • @jamesjohn2537
    @jamesjohn2537 3 วันที่ผ่านมา

    thanks Sir, i completed your lectures, they are very helpful.

    • @CanBijles
      @CanBijles 3 วันที่ผ่านมา

      Great to know the videos are helpful. Share the knowledge :)

  • @vovashv
    @vovashv 3 วันที่ผ่านมา

    Please tell me where exactly the formulas for calculating Ki, Kp, Kd are located in the books of Dorf&Bishop and Nise

    • @CanBijles
      @CanBijles 3 วันที่ผ่านมา

      You can find them and more details in the following book: Feedback Control Systems, Charles L. Phillips & John M. Parr

    • @vovashv
      @vovashv 3 วันที่ผ่านมา

      @@CanBijles Thank you very much for your response. It is a pity that I could not find this book in the public domain.

    • @CanBijles
      @CanBijles 3 วันที่ผ่านมา

      ​@@vovashv Here is the link: www.amazon.com/Feedback-Control-Phillips-Prentice-Hardcover/dp/B00LMTLLA6

  • @fablearchitect7645
    @fablearchitect7645 4 วันที่ผ่านมา

    4:08 how did you get the "normalized output with LC filter" graph? Is it derived using numerical simulation due to the non linear nature of the diodes?

    • @CanBijles
      @CanBijles 4 วันที่ผ่านมา

      The graph for "Normalized output with LC filter" is taken from a nonlinear equation. I left the details out, but it is somewhat work to get to the actual details. This is not due to the diode, but due to the discontinuous behavior of the inductor current.

    • @fablearchitect7645
      @fablearchitect7645 4 วันที่ผ่านมา

      @@CanBijles Do you have another video or source that covers these details? thanks

    • @CanBijles
      @CanBijles 4 วันที่ผ่านมา

      @@fablearchitect7645 You can look at Chapter 3 in Power Electronics, Muhammad Rashid for more details.

  • @mohameddrissi1075
    @mohameddrissi1075 4 วันที่ผ่านมา

    hello sir , do you have videos explaining inverters ?

    • @CanBijles
      @CanBijles 4 วันที่ผ่านมา

      @@mohameddrissi1075 Yes, sure. Here is the playlist about inverters. Inverters (DC to AC Converter): th-cam.com/play/PLuUNUe8EVqlkDI0dky7_JIMC4TyVSS99Q.html

  • @sadeghmollaii9873
    @sadeghmollaii9873 4 วันที่ผ่านมา

    Awsome. Waiting for variable dc dc converters design tutorial. Specially the controller design process. Thanks.

    • @CanBijles
      @CanBijles 4 วันที่ผ่านมา

      Great to know! Here is the link for the feedback controller design for the DC-DC Buck Converter: th-cam.com/video/p5q5jMvsjto/w-d-xo.html

    • @sadeghmollaii9873
      @sadeghmollaii9873 4 วันที่ผ่านมา

      @@CanBijles thank you👌

    • @CanBijles
      @CanBijles 4 วันที่ผ่านมา

      @@sadeghmollaii9873 You're welcome!

  • @jamesjohn2537
    @jamesjohn2537 6 วันที่ผ่านมา

    HI, CAN, could you explain why i shouldn't considered the sqrt(3) for 3-phase in this particular case leading to sqrt(6) for Vo,LN. is used of value of 6 define six-steps of switching?

    • @CanBijles
      @CanBijles 4 วันที่ผ่านมา

      Thanks for your message. I do not know if you mean the formula, but I answered this already for another question in this video. The formula for Vo,n,LN is correct, but when I moved to next slide to collect the formulas, I forgot the sqrt(2) in de denominator, so in total, it should be divided by sqrt(6). Actually, the formula should be written as Vo,n,LN where the harmonics order n is shown. Does this answer your question?

    • @jamesjohn2537
      @jamesjohn2537 4 วันที่ผ่านมา

      @@CanBijles yes, you re correct, you said sqrt(6) is the correct once below. I read it after asking you the question above, sorry for that. but moreover am asking why is it the case in the formula sqrt(6) also i see 6 appearing in Vo,LL in this divided by pie inside the cosine. the waveform across the loads no pie/6 but pie/3 of each phase being shifted. would you explain the concept behind it, if you don't mind it? and thank sir

    • @jamesjohn2537
      @jamesjohn2537 4 วันที่ผ่านมา

      yep, I see why it should be sqrt(6), you don't have to answer that part, its is clearer! that is from sqrt(2) multiplied by sqrt(3) at the denominator equal to sqrt(6) defining Vo,n,LN so nothing to do with six switches. however 30 degrees inside the cosine i have no idea since each phase is shifted by 60 degrees( pie/3).

  • @petrusbosman4264
    @petrusbosman4264 6 วันที่ผ่านมา

    Thank you very much for a great informative video! Baie dankie!, Hartelijk dank!

    • @CanBijles
      @CanBijles 6 วันที่ผ่านมา

      You're welcome! Great to know that you liked the video!

  • @phillipneal8194
    @phillipneal8194 7 วันที่ผ่านมา

    Great video. Thank you

    • @CanBijles
      @CanBijles 7 วันที่ผ่านมา

      Great you liked the video!

  • @jamesjohn2537
    @jamesjohn2537 10 วันที่ผ่านมา

    I also assumed that, (wt=a) and boundary is between (+ -a) in order not to zero due to symmetry but not that great, i found the magnitude to contain negative with is totally wrong too! if you can explain to me that can be great and thanks

    • @CanBijles
      @CanBijles 10 วันที่ผ่านมา

      The boundaries are shown in the integration at 06:05. You can also see this from the plot of the output voltage.

    • @jamesjohn2537
      @jamesjohn2537 10 วันที่ผ่านมา

      yeah sir i did see that, the simplification if plugin boundaries into negative cosine after integration. of (negative COS(n(pie-a)) subtract way negative COS(n(a)) positive DC peak across load then multiply by 2 for full cycle. And end up with 2Vdc/npie (2COS(n(a))) also if am not wrong then i got an idea of how you got result. I try simplification using reduction identities of COS(pie + X)=negative COS(X) the only problem is insde COS(pie-a) is difference rather then sum! but it result into the solution you got if only i ignored the difference and X =+delay(a).

  • @jamesjohn2537
    @jamesjohn2537 10 วันที่ผ่านมา

    Hello CAN, sir i have question about integrating magnitude of harmonic amplitude formula. inside integral did you let differential element (dwt), be (da) hance VSin(nwt) into VSin(nat)?? how about boundary condition.

    • @CanBijles
      @CanBijles 10 วันที่ผ่านมา

      The integral at 06:05 has the variable wt, which has the unit of radians.

  • @AllenSA_Lymangirl
    @AllenSA_Lymangirl 11 วันที่ผ่านมา

    Nice 👍 I am new 2024

    • @CanBijles
      @CanBijles 11 วันที่ผ่านมา

      👍

  • @philliphollingsworth6601
    @philliphollingsworth6601 12 วันที่ผ่านมา

    How do you know the calculated values are peak values and not RMS values? thank you

    • @CanBijles
      @CanBijles 12 วันที่ผ่านมา

      The input sources are given by their peak values, not RMS values. The formulas I am using consider also the peak values, not the RMS values.

    • @philliphollingsworth6601
      @philliphollingsworth6601 12 วันที่ผ่านมา

      thank you

    • @CanBijles
      @CanBijles 12 วันที่ผ่านมา

      @@philliphollingsworth6601 You are welcome.

  • @Julia-oe9xl
    @Julia-oe9xl 13 วันที่ผ่านมา

    I don't understand why doing I_L=I_F-I_{2-} doesn't work. because this gives: I_L=I_F V_L/R_L = (V_{1-} - V_L)/R_F (1/R_L + 1/R_F) V_L = V_{1-}/R_F V_L = V_{1-}/(R_F/R_L + 1) and since V_{1-}=V_{1+}=0V, then V_L must be 0V too. I don't get where I am going wrong, yet it's clearly the wrong answer.

    • @CanBijles
      @CanBijles 13 วันที่ผ่านมา

      Thanks for your message. The equation you write for the output node as: I_L = I_F - I_{2-} is not correct, because you are not taking the current flowing out of op-amp 2. In your case, it would mean I_F = I_L, which is of course not correct. I hope this clarifies the situation.

    • @Julia-oe9xl
      @Julia-oe9xl 13 วันที่ผ่านมา

      @@CanBijles Oh, of course! Thank you

    • @CanBijles
      @CanBijles 13 วันที่ผ่านมา

      ​@@Julia-oe9xl You are welcome!

  • @kidcasco1966
    @kidcasco1966 13 วันที่ผ่านมา

    Thank you for your concise and pleasant discussion on this topic.

    • @CanBijles
      @CanBijles 13 วันที่ผ่านมา

      Thanks for your message. You're welcome! I am glad that you liked the video!

  • @eduardmihailoiu7609
    @eduardmihailoiu7609 15 วันที่ผ่านมา

    Greetings!!but because in some texts the formula for mos saturation is Id=kn(Vgs-Vth)^2 and in other parts they report it as Id= 1/2*kn(Vgs-Vth)^2. I saw in Razavi's text that he reports that multiplied by 1/2.. thank you very much!!

    • @eduardmihailoiu7609
      @eduardmihailoiu7609 15 วันที่ผ่านมา

      Sorry, I practically answered myself...hahaha,thank you so much!!

    • @CanBijles
      @CanBijles 15 วันที่ผ่านมา

      İndeed 😉👍

    • @eduardmihailoiu7609
      @eduardmihailoiu7609 14 วันที่ผ่านมา

      @@CanBijles I tried to write her an email, but I don't know if I used the right email address😂

    • @CanBijles
      @CanBijles 14 วันที่ผ่านมา

      @@eduardmihailoiu7609 I received your email. I will get back to it tomorrow.

    • @eduardmihailoiu7609
      @eduardmihailoiu7609 14 วันที่ผ่านมา

      @@CanBijles oh perfect, thank you!!

  • @Hunefsus
    @Hunefsus 18 วันที่ผ่านมา

    Teşekkürler Mehmet hocam çok yardımcı oldu.

    • @CanBijles
      @CanBijles 18 วันที่ผ่านมา

      @@Hunefsus Çok memnun oldum!

  • @petrusbosman4264
    @petrusbosman4264 18 วันที่ผ่านมา

    How do you get the given transfer function, if you compare to the videos from Prof Marcos Alonso, he designs by choosing the inductor and output capacitor first from other design criteria , and then the transfer function is established from that, followed by the actual component values, Thank you for great Videos, Greetings, Petrus Bosman.

    • @CanBijles
      @CanBijles 18 วันที่ผ่านมา

      Hi Petrus, thanks for your mail. Great to know you liked the video! The transfer function F(s), which is taking into account the filter and load, is determined using the output voltage divided by the input voltage for F(s) circuit only. When you carry out the analysis, you will get the transfer function F(s). The calculations of the component values really depend on the design specifications and of course on the available components.

  • @dienau6313
    @dienau6313 22 วันที่ผ่านมา

    I have a question, if G(s) = 400/s(s+2)(s+3), which method should I use to solve?

    • @CanBijles
      @CanBijles 22 วันที่ผ่านมา

      It depends on what do you want. In general, it does not depend on the transfer function.

  • @eduardmihailoiu7609
    @eduardmihailoiu7609 25 วันที่ผ่านมา

    Hello!!How did you manage to solve the equation for VGS3? the calculator gives me an error if I try to run it. thank you!!

    • @CanBijles
      @CanBijles 25 วันที่ผ่านมา

      I used a solver to solve the equation. You can use a solver in a calculator or from a website or just do it by hand.

    • @eduardmihailoiu7609
      @eduardmihailoiu7609 25 วันที่ผ่านมา

      Thanks!! but from the first term comes a cubic term..

    • @CanBijles
      @CanBijles 24 วันที่ผ่านมา

      ​​@@eduardmihailoiu7609 Use this link to solve and see the solutions. www.wolframalpha.com/calculators/equation-solver-calculator

    • @eduardmihailoiu7609
      @eduardmihailoiu7609 24 วันที่ผ่านมา

      @@CanBijles Thank you. I used wolframAlfa and it seems to have worked.

    • @CanBijles
      @CanBijles 24 วันที่ผ่านมา

      ​@@eduardmihailoiu7609 Great!

  • @josiahdill7117
    @josiahdill7117 25 วันที่ผ่านมา

    Can you explain in more detail the relation between the calculated output noise voltage and the simulated output noise voltage. I didn't quite understand how you picked your frequency for comparison.

    • @CanBijles
      @CanBijles 25 วันที่ผ่านมา

      For comparison with the simulation results, I used the integration bandwidth as the frequency for determining the total output RMS noise voltage. This is a rule of thumb, but is valid for most practical purposes. Also, the noise will not contribute much for larger frequencies.

  • @jamesjohn2537
    @jamesjohn2537 26 วันที่ผ่านมา

    Hi, Sir, in your expression of current max/min, why are you using Vdc/R instead of Vdc/Zp???........ Is it because of the RL response of the steady state where inductor become short-circuited. I see in your expression if am not wrong, you using force response. would you mind to derive the expression of the formulas of load current and voltage above in your calculation and thank

    • @CanBijles
      @CanBijles 26 วันที่ผ่านมา

      The V_DC/R is the steady-state value of the load current. At steady-state, the current in the inductor is zero. The derivation of this formula can be found in many book, for example: Power Electronics, Daniel Hart

    • @jamesjohn2537
      @jamesjohn2537 18 วันที่ผ่านมา

      @@CanBijles thanks sir.

    • @CanBijles
      @CanBijles 18 วันที่ผ่านมา

      ​@@jamesjohn2537 You are welcome!

  • @jamesjohn2537
    @jamesjohn2537 28 วันที่ผ่านมา

    CAN, thanks for these awesome lectures,

    • @CanBijles
      @CanBijles 28 วันที่ผ่านมา

      You are welcome!

  • @heinzergrinder1901
    @heinzergrinder1901 29 วันที่ผ่านมา

    Hello Sir... Where can I get the paper version of the book 📖 named " Transfer functions of switching converters " ? Thanks

    • @CanBijles
      @CanBijles 29 วันที่ผ่านมา

      Maybe from a library or search the internet.

  • @pejlin30
    @pejlin30 หลายเดือนก่อน

    intressing! this video will be useful for me after summer :D will check it deeper later, atm on e-plan and few days left before summer brake! thx you for uppload.

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Great to know! You can watch different power converter types and feedback control for buck converter also in this playlist: th-cam.com/play/PLuUNUe8EVqlmo8U7EEBS6W1NpMBkA0JjI.html Good luck!

    • @heinzergrinder1901
      @heinzergrinder1901 หลายเดือนก่อน

      Hello... Where can I get the paper version of the book " TRANSFER FUNCTIONS OF SWITCHING CONVERTERS " ? Thanks

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      ​@@heinzergrinder1901 How about searching on internet or library?

  • @robbedelvoye4028
    @robbedelvoye4028 หลายเดือนก่อน

    in step 3 why aren't r1 and r3 in serie and parallel with r2 and r4 that stand in serie with each other?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      In step 3, I show step by step three diagrams explaining how the resistors are situated. Check that again.

  • @JoseGonzalezFernandez-bb6ow
    @JoseGonzalezFernandez-bb6ow หลายเดือนก่อน

    Great video! do you have the reference from the equation analisis?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Thanks for your message. Glad to know you liked the video! 📚 Resources 👇 Power Electronics, Daniel W. Hart, ISBN: 9780073380674

    • @JoseGonzalezFernandez-bb6ow
      @JoseGonzalezFernandez-bb6ow หลายเดือนก่อน

      ​i have a question if you don't have a problem. In a FV system, as source in a buck converter, the In capacitor is important to define a input current ripple isn't? Do you have some equation for this Capacitor? thanks, kind regards!

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      I do not understand the question. What do you mean by FV?

    • @JoseGonzalezFernandez-bb6ow
      @JoseGonzalezFernandez-bb6ow หลายเดือนก่อน

      @@CanBijles sorry for my bad english!!, i mean Photovoltaic System

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      @@JoseGonzalezFernandez-bb6ow The capacitor, which is in parallel with the load, will determine the output voltage ripple. Increasing the value of this capacitor will decrease the output voltage ripple.

  • @eduardmihailoiu7609
    @eduardmihailoiu7609 หลายเดือนก่อน

    Hi, great video! By any chance in your channel is there the design of an op amp explained with the current mirror? I mean a multi-stage op amp.

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Thanks for your message! Glad you liked the video. Here are some playlists: Operational Amplifier Circuits: th-cam.com/play/PLuUNUe8EVqlmhmvCuxr326mnNKHB5jwJx.html

    • @eduardmihailoiu7609
      @eduardmihailoiu7609 หลายเดือนก่อน

      @@CanBijles an example in which you cascade a common source stage to the differential stage to amplify the signal, did you do it by chance? I really mean the internal structure of an op amp (differential stage/common source stage/studio buffer) for example

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      @@eduardmihailoiu7609 I have not done a video about a full transistor design of an op-amp circuit. Sounds interesting to make one in the coming future, will be in list.

    • @eduardmihailoiu7609
      @eduardmihailoiu7609 หลายเดือนก่อน

      @@CanBijles it would be very interesting!!

    • @eduardmihailoiu7609
      @eduardmihailoiu7609 หลายเดือนก่อน

      but the differential couple and the current mirror need to work in the active zone (saturation zone) to work well, right?

  • @ardiankk2949
    @ardiankk2949 หลายเดือนก่อน

    great video that is a must watch for Mechatronics engineering undergrads. Thank you for sharing!!

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Thanks, great to know you liked the video! See this link for more videos about dynamic systems: th-cam.com/play/PLuUNUe8EVqllnCB4ajVuXExPMjHn-4K1a.html

  • @supportive_comment
    @supportive_comment หลายเดือนก่อน

    What about if you are only given the repeated roots? For instance, if the denominator was only (s - 5)^2. How would I solve for A and B.

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      If you have only repeated real poles, like (s+5)^2, you will not have the term with A/(s+2). So, you only have the last two terms in the partial fraction expansion I have given.

  • @aydnaliyev914
    @aydnaliyev914 หลายเดือนก่อน

    I tried plotting the bode plot of a fucntion I derived in matlab and Im getting something different than the actual plot. Can you please help me?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Did you checked the MATLAB site? See for example: nl.mathworks.com/help/ident/ref/dynamicsystem.bode.html

  • @sinclair5504
    @sinclair5504 หลายเดือนก่อน

    Hello, what happens if I have repeated poles at the origin, one from the plant and one from the controller. Does it change the computation for the angular criterion in any way?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      The calculations are the same. You only need to take into account the magnitude and phase contributions of each pole and zero as I discuss in the video.

  • @sahinbozkurt886
    @sahinbozkurt886 หลายเดือนก่อน

    dear professor, i am trying to learn controller design for power converters. for the power converters generally we consider gain margin parameter while designing a controller. in your video series i have seen that you did not mention about gain margin. as far as i know gain margin has an important role for transient responses such as line or load transients of power converters. could you please share your ideas about this and explain why you did not mention gain margin while designing pid controller?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Thanks for your message. This is a valid and good question. Indeed, for the stability analysis, we should check both the gain margin and phase margin. In control theory, we also look at the modulus margin, which is actually a better measure how safe we are from the unstable point in the Nyquist plot. Usually (more often, but not always), the phase margin is somewhat more important than gain margin. If the phase margin is sufficient, than the gain margin is probably sufficient too, but of course there is no guarantee. In the videos I discussed about compensator design for buck converter, the gain margin was already large. In the links shown below, they discuss transient response of power converter and the discussion is also based on phase margin only. I do not claim you should only look at phase margin for power converters, but I do not know how strict and important the gain margin is for power converters. Maybe you have a good reference about it, love to read it. www.ti.com/lit/an/snoa507/snoa507.pdf?ts=1717893510339 pdfserv.maximintegrated.com/en/an/AN3453.pdf

    • @sahinbozkurt886
      @sahinbozkurt886 หลายเดือนก่อน

      @@CanBijles çok teşekkür ederim hocam. Benim için oldukça anlaşılır bir cevap verdiniz. İyi çalışmalar dilerim.

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      @@sahinbozkurt886 Rica ederim, memnun oldum. İyi çalışmalar.

  • @sahinbozkurt886
    @sahinbozkurt886 หลายเดือนก่อน

    dear professor, while calculating the arg of loop transfer function at min 8.10 you did not consider the phase contribution of zpi. since it is a zero i think it should have a positive phase contribution to the system. also in denomintator you have taken the phase of w^2 as -90 degrees. it is real number and i think that it should have zero degrees of phase contribution. could you please explain these calculations? if i think wrong i may improve my insight for this example and pi controller design.

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Thanks for your message. Very good questions. Firstly: The PI controller has a pole at the origin (s = 0) and a zero left to this pole. The total phase contribution of the PI controller will be negative. The location of the pole is set, but not the location of the zero of the PI controller. I use the rule of thumb to place the PI controller zero one decade below the phase margin frequency wpm. Secondly: The expression of the real part is -w^2, so the phase is -180 degrees and this is in the denominator of the loop transfer function. The phase of the PI controller zero at wpm is close to +90 degrees and this is in the numerator of the loop transfer function. So, the first part of the phase of the loop transfer function at wpm is 90 - - 180 = 270 degrees or -90 degrees. That is the reason for the -90 degrees.

    • @sahinbozkurt886
      @sahinbozkurt886 หลายเดือนก่อน

      @@CanBijles thank you so much for your really fast return and explanation. I have understood very well why you have made the calculations as in video. I appreciate for your help.

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      @@sahinbozkurt886 Rica ederim. Başarılar 👍

  • @dienau6313
    @dienau6313 หลายเดือนก่อน

    May you help me how to plot 2 graphs at 18:13?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      You can find more information about controller tuning and plotting here: nl.mathworks.com/help/control/ug/getting-started-with-the-control-system-designer.html

    • @dienau6313
      @dienau6313 หลายเดือนก่อน

      @@CanBijles thank you

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      ​@@dienau6313 You're welcome.

  • @abidnurkhanRafi
    @abidnurkhanRafi หลายเดือนก่อน

    Have you done the hardware implementation of this project?or any experience of cuk convrter hardware?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      I have not done the hardware implementation of this converter.

  • @biswajit681
    @biswajit681 หลายเดือนก่อน

    What is the application of this circuit?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Filters are used in many applications. Bandpass filters are used to pass a specific frequency band only.

  • @supremebohnenstange4102
    @supremebohnenstange4102 หลายเดือนก่อน

    The first diagram with the Rm and F phi looks like voltage and not current Is that intended?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      The magnetomotive force F is analogues to voltage source in the electrical domain. That is the reason for using a voltage source symbol for F.

    • @supremebohnenstange4102
      @supremebohnenstange4102 หลายเดือนก่อน

      @@CanBijles yes. But the phi looks like it makes Kirchhoffs law loop for voltage and not current I am sorry I learned all this in a different language I have no idea how you call all this.

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      ​@@supremebohnenstange4102 The phi is the current in the electrical domain, so Kirchhoff's voltage law can still be applied.

    • @supremebohnenstange4102
      @supremebohnenstange4102 หลายเดือนก่อน

      @@CanBijles yes I know My problem is the circle arrow. We didn't learn that for current but. Voltage

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      ​@@supremebohnenstange4102 I got it. Is it clear now?

  • @aamir99204
    @aamir99204 หลายเดือนก่อน

    Hi sir why will the noise current not flow through the capacitor?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Where in the video was this discussed?

    • @aamir99204
      @aamir99204 หลายเดือนก่อน

      while deriving the equivalent resistance in order to calculate the input voltage referred noise due to the input current

    • @aamir99204
      @aamir99204 หลายเดือนก่อน

      at 22:45 sir

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Capacitor in combination with a resistor (RC circuit) will generate noise voltage for the capacitor, but not a noise current. More details can be found here: Thermal noise on capacitors en.wikipedia.org/wiki/Johnson%E2%80%93Nyquist_noise

  • @aamir99204
    @aamir99204 หลายเดือนก่อน

    How will we include the input impedance of the op amp in noise analysis?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      We determine the effect of the internal noise sources of the op-amp and focus om de op-amp first and then the output lowpass filter. For thermal noise calculations, you may combine the resistors and redo the calculations, but the final results will be the same. In fact, there are other parameters not included in this example, like the input and output impedance of the op-amp, which will have an effect on the actual noise performance of the circuit. You can create an accurate model of the op-amp having the input and output independences included.

  • @barancan3542
    @barancan3542 หลายเดือนก่อน

    what will hapen if my Q(pd) angle is negative?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      It cannot be, because the phase contribution of a PD controller is positive.

  • @aamir99204
    @aamir99204 หลายเดือนก่อน

    Shouldn't the Signal bandwidth be the Gain Bandwith/Signal Gain instead of Noise gain?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      In the noise analysis, we use the noise gain and GBW to calculate the signal bandwidth.

  • @jacobvandijk6525
    @jacobvandijk6525 หลายเดือนก่อน

    Fijn uitgelegd. Met name de grafiek maakte veel duidelijk. Is er ook een AC-versie voor max. vermogensoverdracht?

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Fijn om te weten. Graag gedaan!

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Hier zijn voorbeelden over maximum power transfer in DC en AC (in het Engels): Maximum power transfer in DC: th-cam.com/video/abPGjW_BQQg/w-d-xo.html th-cam.com/video/vKEsUdvBAk8/w-d-xo.html Maximum power transfer in AC: th-cam.com/video/tJP9Cp0quTA/w-d-xo.html th-cam.com/video/bnOfxnhEbTE/w-d-xo.html

    • @jacobvandijk6525
      @jacobvandijk6525 หลายเดือนก่อน

      @@CanBijles That's great ;-) Thanks a lot!!!

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      You are welcome! 👍

  • @SMV1972
    @SMV1972 หลายเดือนก่อน

    Thank you very much. I made an adjustable power supply unit for TL494. 0-27 V; 0-12A.I calculated the phase compensation for the first voltage error amplifier according to your methodology. It works perfectly! The second error amplifier operates on current limitation and short circuit protection. The shunt is in the circuit on the underside, after the load resistance. A small voltage proportional to the flowing current goes from it to the input of the operational amplifier. Please tell me, can I calculate compensation for the second error amplifier using this technique? What should be taken into account, because in this case we take the feedback signal not from the capacitor, but from the lower side of the load resistance? I'm sorry, I have to work with a translator.

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Thanks for your message. Great to know that the method works! I will need some time for this. Maybe you can send me some details via mail can.mehmet.tr@gmail.com so I can give a better answer. I will let you know coming week.

    • @SMV1972
      @SMV1972 หลายเดือนก่อน

      @@CanBijles Well, I will definitely write to you

  • @alibloushi5749
    @alibloushi5749 หลายเดือนก่อน

    Wow! Talking about circuit A and B first then telling us about the opamp is just smart. In university or other youtube videos they only talk about the characteristics or conditions. which isn’t wrong but they never really show us whats the effect or why this configuration exists. Well done good sir. I appreciate op-amp now thanks to you.

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Thanks for your message 😊 Great to know you have got better insight about the op-amp. Objective was to compare the two situations and thereby observing the effect of having an operational amplifier (op-amp) in the circuit. Good luck👍

  • @CatrielGonz
    @CatrielGonz หลายเดือนก่อน

    Thank you very much

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      You are welcome!

  • @AllenSA_Lymangirl
    @AllenSA_Lymangirl หลายเดือนก่อน

    Thank you sir 😊 We like to use a dual voltage source (-VDD) And how to design the R value when M1 and M2 w/L are different, and then find the Vov on this basic current mirror circuit...

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      You are welcome. You can add a negative supply. You only need to setup the Kirchhoff's voltage loop equation including the negative voltage source.

  • @AllenSA_Lymangirl
    @AllenSA_Lymangirl หลายเดือนก่อน

    Too much simple😊

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Great to know 👍 You are welcome!

  • @AllenSA_Lymangirl
    @AllenSA_Lymangirl หลายเดือนก่อน

    Too much simple😊

    • @CanBijles
      @CanBijles หลายเดือนก่อน

      Great to know 👍 You are welcome!