Kapil Sachdeva
Kapil Sachdeva
  • 41
  • 434 883
Eliminate Grid Sensitivity | Bag of Freebies (Yolov4) | Essentials of Object Detection
This tutorial explains a training technique that helps in dealing with objects whose center lies on the boundaries of the grid cell in the feature map.
This technique falls under the "Bag of Freebies" category as it adds almost zero FLOPS (additional computation) to achieve higher accuracy during test time.
Pre-requisite:
Bounding Box Prediction
th-cam.com/video/-nLJyxhl8bY/w-d-xo.htmlsi=Fv7Bfgxd1I-atZF0
Important links:
Paper - arxiv.org/abs/2004.10934
Threads with a lot of discussion on this subject:
github.com/AlexeyAB/darknet/issues/3293
github.com/ultralytics/yolov5/issues/528
มุมมอง: 1 238

วีดีโอ

GIoU vs DIoU vs CIoU | Losses | Essentials of Object Detection
มุมมอง 5Kปีที่แล้ว
This tutorial provides an in-depth and visual explanation of the three Bounding Box loss functions. Other than the loss functions you would be able to learn about computing per sample gradients using the new Pytorch API. Resources: Colab notebook colab.research.google.com/drive/1GAXn6tbd7rKZ1iuUK1pIom_R9rTH1eVU?usp=sharing Repo with results of training using different loss functions github.com/...
Feature Pyramid Network | Neck | Essentials of Object Detection
มุมมอง 14Kปีที่แล้ว
This tutorial explains the purpose of the neck component in the object detection neural networks. In this video, I explain the architecture that was specified in Feature Pyramid Network paper. Link to the paper [Feature Pyramid Network for object detection] arxiv.org/abs/1612.03144 The code snippets and full module implementation can be found in this colab notebook: colab.research.google.com/dr...
Bounding Box Prediction | Yolo | Essentials of Object Detection
มุมมอง 10Kปีที่แล้ว
This tutorial explains finer details about the bounding box coordinate predictions using visual cues.
Anchor Boxes | Essentials of Object Detection
มุมมอง 11Kปีที่แล้ว
This tutorial highlights challenges in object detection training, especially how to associate a predicted box with the ground truth box. It then shows and explains the need for injecting some domain/human knowledge as a starting point for the predicted box.
Intersection Over Union (IoU) | Essentials of Object Detection
มุมมอง 4.5Kปีที่แล้ว
This tutorial explains how to compute the similarity between 2 bounding boxes using Jaccard Index, commonly known as Intersection over Union in the field of object detection.
A Better Detection Head | Essentials of Object Detection
มุมมอง 2.4Kปีที่แล้ว
This is a continuation of the Detection Head tutorial that explains how to write the code such that you can avoid ugly indexing into the tensors and also have more maintainable and extensible components. It would beneficial to first watch the DetectionHead tutorial Link to the DetectionHead tutorial: th-cam.com/video/U6rpkdVm21E/w-d-xo.html Link to the Google Colab notebook: colab.research.goog...
Detection Head | Essentials of Object Detection
มุมมอง 6Kปีที่แล้ว
This tutorial shows you how to make the detection head(s) that takes features from the backbone or the neck. Link to the Google Colab notebook: colab.research.google.com/drive/1KwmWRAsZPBK6G4zQ6JPAbfWEFulVTtRI?usp=sharing
Reshape,Permute,Squeeze,Unsqueeze made simple using einops | The Gems
มุมมอง 5Kปีที่แล้ว
This tutorial introduces to you a fantastic library called einops. Einops provides a consistent API to do reshape, permute, squeeze, unsqueeze and enhances the readabilty of your tensor operations. einops.rocks/ Google colab notebook that has examples shown in the tutorial: colab.research.google.com/drive/1aWZpF11z28KlgJZRz8-yE0kfdLCcY2d3?usp=sharing
Image & Bounding Box Augmentation using Albumentations | Essentials of Object Detection
มุมมอง 8Kปีที่แล้ว
This tutorial explains how to do image pre-processing and data augmentation using Albumentations library. Google Colab notebook: colab.research.google.com/drive/1FoQKHuYuuKNyDLJD35-diXW4435DTbJp?usp=sharing
Bounding Box Formats | Essentials of Object Detection
มุมมอง 7Kปีที่แล้ว
This tutorial goes over various bounding box formats used in Object Detection. Link the Google Colab notebook: colab.research.google.com/drive/1GQTmjBuixxo_67WbvwNp2PdCEEsheE9s?usp=sharing
Object Detection introduction and an overview | Essentials of Object Detection
มุมมอง 10Kปีที่แล้ว
This is an introductory video on object detection which is a computer vision task to localize and identify objects in images. Notes - * I have intentionally not talked about 2-stage detectors. * There will be follow-up tutorials that dedicated to individual concepts
Softmax (with Temperature) | Essentials of ML
มุมมอง 3.8K2 ปีที่แล้ว
A visual explanation of why, what, and how of softmax function. Also as a bonus is explained the notion of temperature.
Grouped Convolution - Visually Explained + PyTorch/numpy code | Essentials of ML
มุมมอง 5K2 ปีที่แล้ว
In this tutorial, the need & mechanics behind Grouped Convolution is explained with visual cues. Then the understanding is validated by looking at the weights generated by the PyTorch Conv layer and by performing the operations manually using NumPy. Google colab notebook: colab.research.google.com/drive/1AUrTK622287NaKHij0YqOCvcdi6gVxhc?usp=sharing Playlist: th-cam.com/video/6SizUUfY3Qo/w-d-xo....
Convolution, Kernels and Filters - Visually Explained + PyTorch/numpy code | Essentials of ML
มุมมอง 2.2K2 ปีที่แล้ว
This tutorial explains (provide proofs using code) the components & operations in a convolutional layer in neural networks. The difference between Kernel and Filter is clarified as well. The tutorial also points out that not all kernels convolve/correlate with all input channels. This seems to be a common misunderstanding for many people. Hopefully, this visual and code example can help show th...
Matching patterns using Cross-Correlation | Essentials of ML
มุมมอง 1.2K2 ปีที่แล้ว
Matching patterns using Cross-Correlation | Essentials of ML
Let's make the Correlation Machine | Essentials of ML
มุมมอง 1.8K2 ปีที่แล้ว
Let's make the Correlation Machine | Essentials of ML
Reparameterization Trick - WHY & BUILDING BLOCKS EXPLAINED!
มุมมอง 12K2 ปีที่แล้ว
Reparameterization Trick - WHY & BUILDING BLOCKS EXPLAINED!
Variational Autoencoder - VISUALLY EXPLAINED!
มุมมอง 14K2 ปีที่แล้ว
Variational Autoencoder - VISUALLY EXPLAINED!
Probabilistic Programming - FOUNDATIONS & COMPREHENSIVE REVIEW!
มุมมอง 5K3 ปีที่แล้ว
Probabilistic Programming - FOUNDATIONS & COMPREHENSIVE REVIEW!
Metropolis-Hastings - VISUALLY EXPLAINED!
มุมมอง 36K3 ปีที่แล้ว
Metropolis-Hastings - VISUALLY EXPLAINED!
Markov Chains - VISUALLY EXPLAINED + History!
มุมมอง 15K3 ปีที่แล้ว
Markov Chains - VISUALLY EXPLAINED History!
Monte Carlo Methods - VISUALLY EXPLAINED!
มุมมอง 4.7K3 ปีที่แล้ว
Monte Carlo Methods - VISUALLY EXPLAINED!
Conjugate Prior - Use & Limitations CLEARLY EXPLAINED!
มุมมอง 3.5K3 ปีที่แล้ว
Conjugate Prior - Use & Limitations CLEARLY EXPLAINED!
How to Read & Make Graphical Models?
มุมมอง 3.2K3 ปีที่แล้ว
How to Read & Make Graphical Models?
Posterior Predictive Distribution - Proper Bayesian Treatment!
มุมมอง 6K3 ปีที่แล้ว
Posterior Predictive Distribution - Proper Bayesian Treatment!
Sum Rule, Product Rule, Joint & Marginal Probability - CLEARLY EXPLAINED with EXAMPLES!
มุมมอง 7K3 ปีที่แล้ว
Sum Rule, Product Rule, Joint & Marginal Probability - CLEARLY EXPLAINED with EXAMPLES!
Noise-Contrastive Estimation - CLEARLY EXPLAINED!
มุมมอง 11K3 ปีที่แล้ว
Noise-Contrastive Estimation - CLEARLY EXPLAINED!
Bayesian Curve Fitting - Your First Baby Steps!
มุมมอง 7K3 ปีที่แล้ว
Bayesian Curve Fitting - Your First Baby Steps!
Maximum Likelihood Estimation - THINK PROBABILITY FIRST!
มุมมอง 7K3 ปีที่แล้ว
Maximum Likelihood Estimation - THINK PROBABILITY FIRST!

ความคิดเห็น

  • @kiit8337
    @kiit8337 3 วันที่ผ่านมา

    Professor any good tutorials or books can u suggest to start from estimation theory to a bit advanced stats we can learn and moreover how much statistics we need in ML feilds can u tell ?

  • @iliasaarab7922
    @iliasaarab7922 6 วันที่ผ่านมา

    Awesome explanation!

  • @scheingor7968
    @scheingor7968 7 วันที่ผ่านมา

    Sir, thank you for your explanation. However, may I ask to confirm whether I grasp the information in a right way. So the kernel counts are based on the input channels and the filter bank counts are based on the output channels? If thats the case, in the case of 3 input channels with 2 output channels, does the first feature map will be use as addition elements to the last 2 feature maps or through averaging? Or in the case of 4 input channels and 2 output channels does the first feature maps will be added to the second one while the third feature map will be added to the fourth one to make it 2 feature maps? Thank you for your attention

  • @manueljohnson1354
    @manueljohnson1354 7 วันที่ผ่านมา

    Excellent

  • @ameliadunstone6161
    @ameliadunstone6161 9 วันที่ผ่านมา

    Thanks for this informative video! Here is a link to the detailed balance paper as the ones in the description are not accessible any more: kkhauser.web.illinois.edu/teaching/notes/MetropolisExplanation.pdf

  • @rishidixit7939
    @rishidixit7939 10 วันที่ผ่านมา

    What is the meaning of realization of a Random Variable?

    • @KapilSachdeva
      @KapilSachdeva 9 วันที่ผ่านมา

      a sample of a Random Variable. A random variable has an associated probability distribution. A realization is a sample from that distribution.

  • @JackHoff-w8c
    @JackHoff-w8c 10 วันที่ผ่านมา

    fantastic video. thank you

  • @nick45be
    @nick45be 13 วันที่ผ่านมา

    In 3:13 why do you refer to x=0.6 as the first value while immediately after you refer to x=0.6 as the first sample? shouldn't x=0.6 be a single value from a sample of data?

    • @KapilSachdeva
      @KapilSachdeva 9 วันที่ผ่านมา

      It’s the first sample.

  • @fayezalhussein7115
    @fayezalhussein7115 14 วันที่ผ่านมา

    so clear and good

  • @mumbo2526
    @mumbo2526 14 วันที่ผ่านมา

    Very good video! I just have a question on 12:07 : Once we know that the derivatives are x^i, what allows us to just write x^i there in the formula? i is only the exponent of xn and I can’t see any sum iterating over „i“ or anything clarifying which i I need to use? I find it quite difficult to understand that part of the formula during those steps. Only after transforming everything into vectors and Matrices „i“ disappears and the formula becomes readable again.

  • @HàCôngNgaVNUHanoi
    @HàCôngNgaVNUHanoi 21 วันที่ผ่านมา

    Amazing

  • @kapilkhurana4343
    @kapilkhurana4343 22 วันที่ผ่านมา

    Kapil Sachdeva ji . Thanks very much for clearing my doubt over Bayesian equation inherently using marginal distribution. You really are a great teacher 🎉❤

  • @MuhammadRandhawa-u7t
    @MuhammadRandhawa-u7t 26 วันที่ผ่านมา

    the CV model has detected a good boi

  • @RobertWhite-m3p
    @RobertWhite-m3p 28 วันที่ผ่านมา

    Franco Neck

  • @ChrisOffner
    @ChrisOffner 28 วันที่ผ่านมา

    Wonderful video, thank you so much. Your style is very pleasant.

  • @bivekpokhrel5625
    @bivekpokhrel5625 28 วันที่ผ่านมา

    perfect Thank you

  • @rakeshojha6395
    @rakeshojha6395 28 วันที่ผ่านมา

    Sir I am asst prof Bioinformatics I am using this for molecular phylogenetics...thank you so much sir for this video

  • @AndyLianQ
    @AndyLianQ 28 วันที่ผ่านมา

    Thanks for the extraordinary job done! Helped me get a real quick grasp of the meaning of the paper.

  • @TeddyFlanagan-q8l
    @TeddyFlanagan-q8l หลายเดือนก่อน

    Clement Landing

  • @leoalanya4290
    @leoalanya4290 หลายเดือนก่อน

    How can we just sample from the target distribution in order to calculate the acceptance ratio? Doesn't that defeat the purpose of the algorithm: Why wouldn't I just take samples from the target directly? Or is the problem that we are not able to draw independently from the target?

  • @DorisCorey-j7i
    @DorisCorey-j7i หลายเดือนก่อน

    Hernandez Betty Lewis Kenneth Gonzalez Christopher

  • @SM-mj5np
    @SM-mj5np หลายเดือนก่อน

    You're awesome.

  • @Blu3B33r
    @Blu3B33r หลายเดือนก่อน

    5:57 gave me the aha!-moment. Thank you so much!

  • @snehamishra5275
    @snehamishra5275 หลายเดือนก่อน

    So the bounding box comes with labeled data ?.....or we ourself are creating bounding box

  • @JagadesanGanesan
    @JagadesanGanesan หลายเดือนก่อน

    What a clear explanation ! A gem.

  • @mechros4460
    @mechros4460 หลายเดือนก่อน

    Exactly what I was looking for, thank you!

  • @somashreechakraborty1129
    @somashreechakraborty1129 หลายเดือนก่อน

    Brilliant explanation! Thank you so much!

  • @alexandrkazda7071
    @alexandrkazda7071 หลายเดือนก่อน

    Thank you, the tutorial helped me a lot to get started with Einops.

  • @III.Jennifer
    @III.Jennifer หลายเดือนก่อน

    209 Lisandro Ridge

  • @GoldYvonne-r9o
    @GoldYvonne-r9o หลายเดือนก่อน

    Hernandez Michael Taylor Donald Walker Richard

  • @EraRyba
    @EraRyba หลายเดือนก่อน

    8831 Osvaldo Heights

  • @danrleidiegues4800
    @danrleidiegues4800 2 หลายเดือนก่อน

    Excellent explanation. Please, continue doing that.

  • @MlEnthusiast-bz2ky
    @MlEnthusiast-bz2ky 2 หลายเดือนก่อน

    when we were calculating Pr(x>5) what is the role of h(x) here ? Cant we just use p(x)

  • @MichelleMoore-l2c
    @MichelleMoore-l2c 2 หลายเดือนก่อน

    Pagac Road

  • @AlixChace-x7d
    @AlixChace-x7d 2 หลายเดือนก่อน

    I have a question if it is possible for the sum of probabilities for future state to be greater than 1 as in the case of s3 at 14:04 in video...? It seems it should sum to 1 always.

  • @ianhowe8881
    @ianhowe8881 2 หลายเดือนก่อน

    Incredible explanatory skills!

  • @deeplearningexplained
    @deeplearningexplained 2 หลายเดือนก่อน

    awesome explanation!

  • @gender121
    @gender121 2 หลายเดือนก่อน

    Can you please guide me whether weight vector is column vector or row vector. It is creating confusion in multiplication. Thanks in advance for the great series.

  • @SgheGejsj
    @SgheGejsj 2 หลายเดือนก่อน

    Wilson Jose Lewis Matthew Smith Matthew

  • @vivekpokharel4731
    @vivekpokharel4731 2 หลายเดือนก่อน

    Thank you so much.

  • @LoisStewart-t6g
    @LoisStewart-t6g 2 หลายเดือนก่อน

    Thompson Cynthia Martin Frank Brown Jason

  • @rocksbox156
    @rocksbox156 2 หลายเดือนก่อน

    Awesome video. Is there any intuition on why we are using reverse KL as opposed to forward KL?

  • @abbudeh
    @abbudeh 2 หลายเดือนก่อน

    How do we evaluate the target function f, if we assume that it is not known and we want to discover it?

  • @StudentsThough
    @StudentsThough 2 หลายเดือนก่อน

    Garcia Larry Lewis Charles Hernandez Carol

  • @nkapila6
    @nkapila6 2 หลายเดือนก่อน

    Have been using Chris Bishop's new DL book and he reuses the same figure from PRML. Thanks for your video, the general equations are crystal clear now! ❤

  • @Charmander36023
    @Charmander36023 2 หลายเดือนก่อน

    Thank you for your work, you are a very talented and valuable teacher

  • @schlast8311
    @schlast8311 2 หลายเดือนก่อน

    then why not just use f(x), let c*g be a straight line equal to the maximum of f(x)

  • @미비된동작-p4g
    @미비된동작-p4g 2 หลายเดือนก่อน

    Amazing!!

  • @FinancialYaweli
    @FinancialYaweli 2 หลายเดือนก่อน

    Walker William Moore Patricia Perez Anthony

  • @NurettinOzcelik
    @NurettinOzcelik 2 หลายเดือนก่อน

    Very good explanation of Kalman filter, thanks for your time and work for that video.