A beautiful approach to the Fresnel integrals using complex analysis

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ธ.ค. 2024

ความคิดเห็น • 37

  • @srijanbhowmick9570
    @srijanbhowmick9570 2 ปีที่แล้ว +6

    As a high school student I really enjoy your videos on improper integrals . Subscribed !

    • @jacobguerreso675
      @jacobguerreso675 9 หลายเดือนก่อน +3

      High school? I was thinking this to be better suited for middle school...

    • @callme5154
      @callme5154 4 หลายเดือนก่อน

      😢😢middle school???​@@jacobguerreso675

  • @seegeeaye
    @seegeeaye 2 ปีที่แล้ว +11

    We can find I without using the Gamma function by writing I as int of (1/(sqrt i)) ( e^(-(sqrt i)x)^2) d((sqrt i) x) = sqrt pi /2 (sqrt i) by the Gauss formula

    • @maths_505
      @maths_505  2 ปีที่แล้ว +3

      Oh that is quite nice

  • @corneliusgoh
    @corneliusgoh ปีที่แล้ว +13

    Please don't confuse , call i , not iota

    • @ngc-fo5te
      @ngc-fo5te ปีที่แล้ว +3

      Correct - because the Greek. was never used for this - the original is the Latin i
      Iota seems to be popular in India but not used elsewhere.

  • @alef0811
    @alef0811 2 ปีที่แล้ว +2

    This is how I solved them, by starting from the Laplace transform, making a substitution of x=-iu, and then equating the real and imaginary parts. The only problem I had with this is that when making that substitution, the limit of the integral should go from infinity to (i)*infinity. But if we just treat i as a real number the limit stays as infinity and we end up with the right solution. Is there an explanation on why this works and why we're allowed to do it?

    • @maths_505
      @maths_505  2 ปีที่แล้ว

      You don't have to make that substitution. The "s" parameter of the laplace transform is a complex number so you can let s=i. That'll get rid of pesky limit transforms.

    • @Θρησκόληπτος
      @Θρησκόληπτος 2 หลายเดือนก่อน

      @@maths_505 But this is full-blown complex integration, in disguise.

  • @usernameisamyth
    @usernameisamyth ปีที่แล้ว

    the Laplace approach was nice (I would've gone for Gaussian integral)

  • @sohelzibara8166
    @sohelzibara8166 2 ปีที่แล้ว

    Nice solution. Keep it up

  • @aminansari5512
    @aminansari5512 ปีที่แล้ว

    Tnx bro very good explanation

  • @alang.2054
    @alang.2054 2 ปีที่แล้ว

    Magnificent

  • @rishirajbaul3727
    @rishirajbaul3727 2 ปีที่แล้ว +1

    I think something which should have been mentioned is that (i)^(-0.5) can represent two different complex numbers and we are looking for the one which has positive real part and negative imaginary part. So, for your approach to be fully rigorous I think it needs to be shown independently that the two Fresnel integrals are actually non-negative. Can you give a short proof of this?
    Other than that, nice work!

    • @maths_505
      @maths_505  2 ปีที่แล้ว

      You're right but I thought that was kinda trivial at this level so I just skipped mentioning it.

  • @tobiaswilke8023
    @tobiaswilke8023 7 หลายเดือนก่อน

    super easy thank youuuu

  • @harethomari5684
    @harethomari5684 2 ปีที่แล้ว

    Amazing 😍

    • @maths_505
      @maths_505  2 ปีที่แล้ว

      My words exactly on solving it

  • @nicogehren6566
    @nicogehren6566 2 ปีที่แล้ว

    very nice question

  • @corneliusgoh
    @corneliusgoh ปีที่แล้ว

    See this simpler method by Penne/Chen Hongwei without Laplace and Gamma function.

    • @corneliusgoh
      @corneliusgoh ปีที่แล้ว

      th-cam.com/video/WHawX2fQjg4/w-d-xo.html

  • @mehmetozdemir8115
    @mehmetozdemir8115 2 ปีที่แล้ว

    Hi, which program are you writing on?

    • @maths_505
      @maths_505  2 ปีที่แล้ว +1

      It's just the default samsung notes app

  • @itsyazoudi6787
    @itsyazoudi6787 8 หลายเดือนก่อน

    I didn't understand but I'm sure it's epic

    • @maths_505
      @maths_505  8 หลายเดือนก่อน

      😂😂😂

  • @thomasblackwell9507
    @thomasblackwell9507 2 ปีที่แล้ว +3

    Don’t feel bad about using “iota” ; I still prefer to use my book of logarithms and slide rule to do some calculations.

    • @maths_505
      @maths_505  2 ปีที่แล้ว

      That's actually pretty cool

    • @maths_505
      @maths_505  2 ปีที่แล้ว

      You haven't been active on Instagram lately.
      Everything alright?

    • @charlesbrowne9590
      @charlesbrowne9590 ปีที่แล้ว

      Your comment reminded me when my father gave me a book of logarithms and a slide rule in elementary school some 60 years ago. Also, we lived near the Chemical Rubber Company (CRC) who gave all the kids a copy of “the CRC” which was a math/physics reference. I wanted nothing more than to learn the meaning of all the mysterious symbols.

  • @franciscoduque7703
    @franciscoduque7703 ปีที่แล้ว

    COOL.

  • @sibusisomaseko1607
    @sibusisomaseko1607 6 หลายเดือนก่อน

    How do these even converge? It makes no sense. Its infinite oscillations

  • @rtatt1
    @rtatt1 2 ปีที่แล้ว

    iota?

    • @maths_505
      @maths_505  2 ปีที่แล้ว

      It's the imaginary unit

    • @rtatt1
      @rtatt1 2 ปีที่แล้ว +1

      @@maths_505 Wow. Is this a US term for the imaginary unit perhaps? In all my life studying maths (school, university degree, Master's degree, and 30 years of subsequent study), I have never heard the imaginary unit being called iota. Every day's a schoolday.

    • @maths_505
      @maths_505  2 ปีที่แล้ว +1

      @@rtatt1 I'm south asian so I'm not sure whether this is an American thing but I read this back in freshman year so it just stuck with me

  • @ArthurvanH0udt
    @ArthurvanH0udt 9 หลายเดือนก่อน

    EXTREMELY annoying that you say iota to i !! As it’s NOT! Iota is the 9th letter in the Greek alphabet, i is i representing sqrt(-1).
    The movie IS a very nice solution though!