trig(hyp) integral

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ม.ค. 2025

ความคิดเห็น • 35

  • @wowbagger7168
    @wowbagger7168 หลายเดือนก่อน +8

    I love your solution development. It's streight forward and you don't hold up with obvious exploration of trivial matter. Your presenting speed is all right and your speech clear even for non native listeners . This is a great advantage compared to several other math channels.

  • @CM63_France
    @CM63_France หลายเดือนก่อน +1

    Hi,
    14:07 : multiplied by i .
    "terribly sorry about that" : 1:29 , 2:34 , 3:03 , 7:56 , 10:05 , 10:35 , 11:47 , 12:28 , 15:21 ,
    "ok, cool" : 1:35 , 3:52 , 5:18 , 6:08 , 8:31 , 9:32 , 12:46 , 14:56 .

  • @alexander_elektronik
    @alexander_elektronik หลายเดือนก่อน +8

    amazing as always! one thing: 14:06 there should be an ‚i‘ in front of the Pi right?

    • @slavinojunepri7648
      @slavinojunepri7648 หลายเดือนก่อน

      That's correct

    • @michaelihill3745
      @michaelihill3745 หลายเดือนก่อน +1

      Yes, the integral e^ix /x should equal I Pi. But since the desired integral of sin x / x is the imaginary part of that solution, the imaginary part is simply pi, as written on the next line.

  • @dharunpranay8581
    @dharunpranay8581 หลายเดือนก่อน +1

    I loved whenever you say sinh and cosh. Try to add TAMIL in audio track. For Direchlet's integral you left Lobachevsky's rule. It's the very easy method to solve it

  • @MrWael1970
    @MrWael1970 หลายเดือนก่อน

    Thank you for your effort.

  • @zunaidparker
    @zunaidparker หลายเดือนก่อน

    The man the myth the legend has returned to post once again!
    Just checking, you use Samsung Notes app for these videos? I'm thinking of starting a maths channel too using my Note, focused on much simpler algebra problems. What are some tips and tricks to making these videos with smooth transitions etc.? I've practiced writing on the screen and I must say your handwriting is almost flawless, do you use a screen protector at all? I can't get mine to look neat no matter how slowly I write.

    • @maths_505
      @maths_505  หลายเดือนก่อน

      @@zunaidparker yeah I use a screen protector. I used one back when I used to record on my phone too. I think it's down to practice, I've been using a note phone since 2018 when I bought a note 4 and I've always loved the s pen feature so it just grew on me over the years.

    • @maths_505
      @maths_505  หลายเดือนก่อน

      @@zunaidparker as far as the transitions are concerned, I just record a clip of 4 or 5 minutes and then another until the video is complete and stitch it all together using capcut

  • @daveydd
    @daveydd หลายเดือนก่อน

    Hello sir, feel free to solve this integral whenever you want, but I’d really like seeing it in one of your videos! The integral is from 0 to inf of (e^-x)/((Gamma(3/2 + x))(Gamma(1/2-x))), this integral involves the exponential integral! Ei(x) if I’m right, which you barely show in your videos! I’d be glad to see your solution :))

  • @AndyBaiduc-iloveu
    @AndyBaiduc-iloveu หลายเดือนก่อน

    Hey kammal!
    I have a quick question. Where do you get all these nice problems? Thx! Great video!

  • @markdevries1535
    @markdevries1535 หลายเดือนก่อน +2

    Third from last equation should have pi * i on rhs

  • @alexbloyer
    @alexbloyer หลายเดือนก่อน

    this was awesome

    • @maths_505
      @maths_505  หลายเดือนก่อน

      I'd say it was...
      Worth the hyp😎

  • @VincentKok458
    @VincentKok458 หลายเดือนก่อน

    why are you allowed to combine those integrals at 4:04, to me that feels wrong, because the one u = e^x and the other u = e^-x ?

    • @Sam27182
      @Sam27182 หลายเดือนก่อน +1

      Since these are definite integrals (with limits), once you do the substitution it doesn't matter what they once were. If they were indefinite integrals you'd be right, but that also doesn't matter much as indefinite integrals can't combine like that.

    • @VincentKok458
      @VincentKok458 หลายเดือนก่อน

      @Sam27182 ah ok

  • @slavinojunepri7648
    @slavinojunepri7648 หลายเดือนก่อน

    Excellent

  • @cdkw2
    @cdkw2 หลายเดือนก่อน

    00:43 I tried doing this is physics last year lmao

    • @maths_505
      @maths_505  หลายเดือนก่อน

      Legendary stuff😂

  • @mcalkis5771
    @mcalkis5771 หลายเดือนก่อน

    Good work. What about a hyperbolic trig integral?

    • @maths_505
      @maths_505  หลายเดือนก่อน

      On it

  • @Aplicapitagoras
    @Aplicapitagoras หลายเดือนก่อน

    Very goooooood

  • @kavimahajan8412
    @kavimahajan8412 หลายเดือนก่อน +1

    Someone explain hyperbolic trig to me

    • @kavimahajan8412
      @kavimahajan8412 หลายเดือนก่อน

      Like I know how to express them with the exponential but how is that related to sin or cos

    • @insouciantFox
      @insouciantFox หลายเดือนก่อน +3

      ​@@kavimahajan8412they are the same as sin and cos but rotated by π/2 in the complex plane. So on the imaginary axis sinh and cosh are oscillatory and on the real axis sin and cos are oscillatory.
      Alternatively, sinh and cosh are defined such that cosh²x-sinh²x≡1. Representing the x and y parts of a hyperbola, like cos and sin represent the x and y parts of a circle.

    • @sevenpheonix3293
      @sevenpheonix3293 หลายเดือนก่อน +1

      they’re like the ‘imaginary version’ of sin and cos:
      cosh(x) = cos(ix)
      sinh(x) = -i*sin(ix)
      and because of this they obey a lot of formulas/identities very similar to trig identities

    • @aidenmcdonald5605
      @aidenmcdonald5605 หลายเดือนก่อน

      What both these guys above said, additionially just like how (sin(t),cos(t)) describes a point on the circle x^2+y^2=1, (cosh(t),sinh(t)) describes a point on the hyperbola x^2-y^2=1. Planet orbits are usually circular, but if a planet exceeds its escape velocity, or a comet flies by a star, its "orbit" will be hyperbolic.

  • @sudhamishra6596
    @sudhamishra6596 หลายเดือนก่อน

    "The Hindu religion is the only one of
    the world's great faiths dedicated to
    the idea that the Cosmos itself
    undergoes an immense, indeed an
    infinite, number of deaths and
    rebirths. It is the only religion in which
    the time scales correspond to those of
    modern scientific cosmology. Its
    cycles run from our ordinary day and
    night to a day and night of Brahma,
    8.64 billion years long. Longer than
    the age of the Earth or the Sun and
    about half the time since the Big
    Bang."
    “Most cultures imagine the world to be a few hundred human generations old. Hardly anyone guessed that the cosmos might be far older but the ancient Hindus did,”
    "It is the only religion in which the time scales correspond, to those of modern scientific cosmology"
    ~ CARL SAGAN (famous astronomer, cosmologist)

  • @petterituovinem8412
    @petterituovinem8412 หลายเดือนก่อน +1

    integral hype