Find the maximum value of n

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ม.ค. 2025

ความคิดเห็น • 105

  • @mudspud
    @mudspud 6 หลายเดือนก่อน +23

    Interesting question and solution

  • @KevinTheall
    @KevinTheall 6 หลายเดือนก่อน +12

    Alternatively, this problem can be solved using the Pythagorian triple parameterization:
    Let a,b,c be positive integers.
    For a² + b² = c²
    Set a = m² - l², b = 2ml and c = m² + l² where m>l are chosen positive integers.
    Apply this to the equation
    k² + (102)² = (n +102)² where n and k are positive integers to be determined. Set 2ml = 102 to obtain ordered pairs of positive integers (m,l) element of {(51,1), (17,3)}. Using Pythagorian parameterization, the pair (17,3) leads to k = 280 and n = 196. The first pair (51,1) leads to k = 2600 and n =2500, the desired result.

  • @avupatimunna1171
    @avupatimunna1171 6 หลายเดือนก่อน +15

    Excellent explanation on how to approach such questions

  • @PavelSVIN
    @PavelSVIN 6 หลายเดือนก่อน +18

    There is a shorter and simpler way. We know there is a perfect square under the square root. It means n²+204n=(n+k)² where k - some positive integer. From here we get n=k²/(204-2k). 204-2k is even as it can be presented as 2*(102-k), where k is an integer. Thus k² should be even as n is an integer, so k is even. Maximum n is when an expression 204-2k is minimal and positive (remember n is positive and k is positive and even) - it is when k=100. n=100²/(204-2*100)=2500

    • @MathProdigy2
      @MathProdigy2 6 หลายเดือนก่อน +3

      Once we get to n=k^2/(2(102-k)), we can set three conditions for k to help us find the value of k.
      1. K is an even number (k^2=2n(102-k), making k^2 even. Because of this k must be even)
      2. 102-k cannot result in a negative value, as it doesn’t make n a positive integer. This shows that k must be less than 102.
      3. The whole point of this is to find the max value of n. If we are trying to find the max value of n, k must also be a max value.
      Putting these conditions together, k=100 is the only logical answer.
      If i made any mistakes, please let me know.

    • @Jono4174
      @Jono4174 2 หลายเดือนก่อน

      even-sshmeven
      It’s easier to just try j=101 and say 14:49 sumsq(101)/2 is not an integer

    • @motogee3796
      @motogee3796 หลายเดือนก่อน

      This is way easier. Thx

  • @freddyalvaradamaranon304
    @freddyalvaradamaranon304 6 หลายเดือนก่อน +1

    Profesor Tambuwal muchas gracias por compartir tan buen video, explicando con detalle el procedimiento. Mi hija y mi persona estamos muy agradecidos de nuevo con su bella persona. ❤😊❤😊.

  • @GameX1209
    @GameX1209 6 หลายเดือนก่อน +5

    Amazing question sir.
    Thanks for sharing this question
    And for the amazing explanation keep up the good work
    Love from India ❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

  • @williamperez-hernandez3968
    @williamperez-hernandez3968 6 หลายเดือนก่อน +7

    Quickest to solve for n was using: n + 102 = k. We have k = r +2 = 2602. So n= 2602-102, n=2500.

  • @thembashezi5540
    @thembashezi5540 4 หลายเดือนก่อน +1

    Grate staff keep going.

  • @stevenwilson5556
    @stevenwilson5556 6 หลายเดือนก่อน +1

    This was utterly brilliant. I immediately recognized that 0 was a solution. That was super easy to find. Of course that's not a positive solution so that doesn't really help. To find this max value tho, that was next level. Bravo.

  • @pietergeerkens6324
    @pietergeerkens6324 6 หลายเดือนก่อน +5

    Nice problem!.
    If you know the perfect squares up to 24², this mental math trick quickly gives you the perfect squares from 26² to 74², for 1 < n < 25:
    (50 ± n)² = 50² ± 2⋅50⋅n + n²
    = 2500 ± 100n + n².
    For example:
    37² = (50 - 13)² = 2500 - 1300 + 169 = 1200 + 169 = 1369,
    73² = (50 + 23)² = 2500 + 2300 + 529 = 4929,
    and
    51² = 2500 + 100 + 1 = 2601.
    Similarly, for the same range of n, we get perfect squares up to 124² as
    (100 ± n)² = 100² ± 2⋅100⋅n + n²
    = 10000 ± 200n + n²

  • @mab9316
    @mab9316 6 หลายเดือนก่อน +3

    Hey man. Your solutions are just fantastic. Thanks.

  • @jennymarx9228
    @jennymarx9228 6 หลายเดือนก่อน +1

    Nice 😊😍

  • @aCalifornian94588
    @aCalifornian94588 6 หลายเดือนก่อน +4

    A much easier solution:
    r = sqrt(n^2 + 204 * n) = sqrt(n) * sqrt(n + 204)
    n is a square, also (n + 204) is a square. Let k = sqrt(n), j = sqrt(n + 204)
    k is maximized when the gap between k and j is the smallest possible
    Since 204 is even, the gap has to be even. Hence j should be equal to k + 2 to maximize k.
    j^2 - k^2 = 204
    (k + 2)^2 - k^2 = 204
    k^2 + 4k + 4 - k^2 = 204
    4k + 4 = 204
    k = 50
    hence n = k^2 = 2500

    • @danfoster8219
      @danfoster8219 6 หลายเดือนก่อน +1

      Neither n nor n+204 need to be square. That's incorrect reasoning.
      There are 3 values of n that this works for: n=196, 768 and 2500. 2500 is the maximum, and it is square, but the other two are not and they work just as well.

    • @aCalifornian94588
      @aCalifornian94588 6 หลายเดือนก่อน

      @@danfoster8219To compute the maximum value of n, it has to be a perfect square.
      Suppose n is not a perfect square, it can only be a product of a perfect square and a factor of 204. However, that will never give us the maximum possible value of n.
      You suggested 768. That is 256 * 3. 3 is a factor of 204. Factor out 3 from all the numbers. You get 256 and 256 + 68 = 324.
      sqrt(256) is 16 and sqrt(324) is 18.
      For n = 768, we have n + 204 = 972. sqrt(n(n + 204)) = sqrt(768 * 972) = sqrt(256 * 3 * 324 * 3) = 16 * 3 * 18.
      You see 3, the selected factor of 204, showing up in the final answer.
      By the same token, we can calculate many values for n by exploiting the factors. None of these will give us the maximum value of n.

  • @mahan1598
    @mahan1598 6 หลายเดือนก่อน +27

    Great job!
    You could also have solved the equation for k (instead of r) and directly find n, as k is equal to n+102

    • @SiladityaSen1993
      @SiladityaSen1993 6 หลายเดือนก่อน +1

      Bit difficult to do 51^2+1.

    • @PavelSVIN
      @PavelSVIN 6 หลายเดือนก่อน +1

      It is possible to avoid any equation (see my comment above)

    • @BielBackup
      @BielBackup 6 หลายเดือนก่อน

      @@SiladityaSen1993 51² + 1 = (50+1)² + 1 = 2500 + 100 + 1 + 1 = 2602

    • @johnpaullogan1365
      @johnpaullogan1365 6 หลายเดือนก่อน +3

      as opposed to the factoring required to get 2500 and 2704? just multiply 51*51 on paper then subtract 101. gives the correct answer of 2500 without nearly as much fuss

    • @Gman6365
      @Gman6365 3 หลายเดือนก่อน +1

      @@SiladityaSen1993 Why not use a calculator? Nothing in the question as stated forbids one. However, if Olympiad rules forbid them what is wrong with doing long multiplication with pen and paper? In my day, 8-year old's were expected to be capable of this. Heck, this is easy enough to do in your head. 51=50+1, 51 squared = (50+1) squared = 50 squared + 2*50+1 = 2601. Now add 1 to give 2602
      But you don't even have to do this!
      We know that k=n+102 so n= k-102=51 squared +1 - 102 =51 squared - 2*51+1=(51-1) squared =50 squared = 2500
      Simples!

  • @childrenofkoris
    @childrenofkoris 5 หลายเดือนก่อน

    this is crazy.. please more more more 🤓🤓🤓🤓🤓🤓🤓

  • @mathmurthy993
    @mathmurthy993 6 หลายเดือนก่อน

    Excellent logic.

  • @florianbuerzle2703
    @florianbuerzle2703 6 หลายเดือนก่อน +1

    Awesome video 😀 And great trick dividing two times by 2… if I had realized that, it would have saved me a lot of time 😂
    My solution was similar, however I did not introduce a new variable for the binomial expression. Using your variables, I wrote:
    (n + 102)² - r² = 102²
    (n + r + 102)(n - r + 102) = 102²
    And now, the difference of two factors of 102² must be as large as possible and each factor must be even, so:
    102² = 2 ∙ (2 ∙ 3² ∙ 17²) = 2 ∙ 5202
    Now we get the following system of equations:
    n + r + 102 = 5202
    n - r + 102 = 2
    Adding these equations and solving for n:
    2n + 204 = 5204
    2n = 5000
    n = 2500.

  • @nothingbutmathproofs7150
    @nothingbutmathproofs7150 6 หลายเดือนก่อน

    Nicely done. Not only could I not have solved this one easily but I would have insisted that you could find larger and larger values for n such that r would be an integer. Very surprising result. Thanks!

    • @PavelSVIN
      @PavelSVIN 6 หลายเดือนก่อน

      There is another way how to solve it (see my comment above)

  • @steven10757
    @steven10757 6 หลายเดือนก่อน

    You explanation is so well put

  • @chinmay6249
    @chinmay6249 6 หลายเดือนก่อน

    Great video as always.
    Keep it up.

  • @matiasholande7
    @matiasholande7 6 หลายเดือนก่อน

    Great job

  • @dirklutz2818
    @dirklutz2818 6 หลายเดือนก่อน

    Amazing!

  • @surendrakverma555
    @surendrakverma555 6 หลายเดือนก่อน

    Very good. Thanks 🙏

  • @skwbusaidi
    @skwbusaidi 5 หลายเดือนก่อน

    Excellent. It would have been eaiser to find k instead of r
    k= 51^2+1
    k= n+102
    n=51^2-101
    n= 51^2-1-100
    n=(51-1)(51+1) -100
    n=50×52 -100
    n=2600-100=2500

  • @TheFrewah
    @TheFrewah 6 หลายเดือนก่อน

    Very interesting problem, I’m not in math mode right now so I need to watch it again.

  • @cesarjmachado
    @cesarjmachado 4 หลายเดือนก่อน

    Thank you. All possible positive solutions for n are 68, 196, 768, and 2500. Plugging factors for the equations: (1, 51^2), (3, 3*17^2), (17, 17*3^2), and (3^2, 17^2).

  • @artandata
    @artandata 6 หลายเดือนก่อน

    great !! thanks for this video, master !

  • @nanashi_74_
    @nanashi_74_ 6 หลายเดือนก่อน +1

    I solved it with a hyperbola:
    √(x²+204x) = y
    where this "y" should be a positive int.

    x²+204x = y²

    (x+102)² - y² = 102²
    and one of the asymptotes of this parabola is y=x+102
    Let the first quadrant part of the parabola as a function "f".
    Domain: (0,∞)
    Range: (f(0),∞)
    While n is positive int, f(n) also should be a positive int
    Also, f(n) is always smaller than n+102 (Think about the asymptote i said)
    [1st attempt: When f(n)=n+101]
    Put x=n and y=n+101
    (x+102)² - y² = 102²
    (n+102)² - (n+101)² = 102²
    ... (skip) ...
    n=5100.5 (sus 🤔)
    [2nd attempt: When f(n)=n+100]
    Put x=n and y=n+100
    (x+102)² - y² = 102²
    (n+102)² - (n+100)² = 102²
    ... (skip) ...
    n=2500 (oh ye)
    Answer: 2500

  • @secret12392
    @secret12392 6 หลายเดือนก่อน +4

    Is this meant to be without a calculator? We would need to factor or do the quadratic formula for (n^2)+204n-(2600^2) by hand (which, I suppose would be less problematic for Olympiad level students than it would be for me)?

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน

      It was hard for me too but I had to struggle through it.

    • @secret12392
      @secret12392 6 หลายเดือนก่อน

      @@PrimeNewtons Which I 100% respect. But, is the problem *intended* to be done with, or without, a calculator, is what I’m curious about.

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน +2

      @@secret12392 Without.

    • @secret12392
      @secret12392 6 หลายเดือนก่อน

      @@PrimeNewtons That’s crazy. I doubt I could do it without a calculator, but I guess that’s why I didn’t do Olympiads! Thanks for your responses and the interesting video

    • @ИрмүүнБ-р8ж
      @ИрмүүнБ-р8ж 6 หลายเดือนก่อน +1

      Maybe, the intention was to instead of finding the value of 'r' and solving a quadratic, find the 'k', which is 2602, and by definition, k is n+102 so you would know n=2500

  • @PenumarthiNavaneeth
    @PenumarthiNavaneeth 6 หลายเดือนก่อน

    you just gained another subscriber

  • @hr5492
    @hr5492 6 หลายเดือนก่อน +8

    I like your idea of ​​adding a passage from the Bible at the end of the video. 😀

  • @tebourbi
    @tebourbi หลายเดือนก่อน

    can't we solve directly for n using k by taking the sum of the two terms which gives us 2k = 2*51²+1 which means k = 51²+1=2601+1=2602
    and k = n + 102 which means n=2500

  • @alibahraminejat5704
    @alibahraminejat5704 6 หลายเดือนก่อน

    fantastic!

  • @inthefogs
    @inthefogs 6 หลายเดือนก่อน

    if i am talking higher level maths in grade 10 next year, what topics may i encounter? i imagine for certain matrices, working with imaginary numbers or exponential equations. any other ideas?

  • @pojuantsalo3475
    @pojuantsalo3475 6 หลายเดือนก่อน +1

    This is absolutely crazy problem! It doesn't look that hard, but I wasn't even close to solving it despite of trying hard. I start solving it in ways that makes sense to me, but very fast I find myself in dead ends that don't make sense at all. So n²+204n must be an integer squared. Extending the square n² with "sidebands of width k" leads to n² + 2*k + k². We get 204n = 2*k + k². Since 204n is always even, k must be even too: k = 2b, were b is integer.
    (n+2b)² = n²+ 4nb + 4b² = n²+204n => n(b) = b² /(51-b). This never gives integers!! What went wrong?

    • @PavelSVIN
      @PavelSVIN 6 หลายเดือนก่อน +1

      Bro, you did 99%. Please see above my comment where I applied the same logic and finally got the answer. In your case b should be equal to 50 - in this case b2/(51-b) is max. And (surprise!) n=50^2/(51-50)=2500

    • @pojuantsalo3475
      @pojuantsalo3475 6 หลายเดือนก่อน

      @@PavelSVIN Yes, you are right! I was very close to the solution! Somehow I didn't see it and instead I thought I was in a dead end. On a good day I would have solved this.

  • @rotten-Z
    @rotten-Z 6 หลายเดือนก่อน

    So, this formula never gives integers for n>2500?

  • @xyz9250
    @xyz9250 2 หลายเดือนก่อน

    Solving k instead of r may be a little easier to get n, as n+102 = k

  • @MrRrrr698
    @MrRrrr698 6 หลายเดือนก่อน

    6:32 how are k+r and k-r same numbers??

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน

      Same parity. Not same numbers

  • @dan-florinchereches4892
    @dan-florinchereches4892 5 หลายเดือนก่อน

    Wow that was impressive. I was thinking about pythagorean triples there like another commenter. About the quadratic at the end i would just use formula... Why bother factoring. B=4*51 and c = (51^2-1)^2 so delta will be 4*(51^2+1)^2 so the solutions will be -102+-2602 since 51^2-1 is 2600 then 51^+1 is 2 bigger.

  • @johnpaullogan1365
    @johnpaullogan1365 6 หลายเดือนก่อน

    would i not be easier to use quadratic formula rather than factoring the last equation n=[-204+-sqrt(204^2+5200^2)]/2 yes it will require some work but all seems rather straightforward compared to factoring

  • @Modo942000
    @Modo942000 6 หลายเดือนก่อน

    What I dont get is how did we even arrive at an answer. Given the initial conditions, what stops us from determining it's infinity? sqrt(inf^2+204inf) feels like a perfectly valid maximum (i know infinity isnt really a positive integer but you get the point). What actually causes a maximum to exist?

    • @flamewings3224
      @flamewings3224 6 หลายเดือนก่อน +1

      Maximum exist in the integer numbers. In the video he said let our square root be “r”, then raised both sides by square, added 102^2 and he got r^2 + 102^2 = k^2, where r is integer by condition and k we made be integer. And we got the Diophantine equestion (k-r)(k+r) = 102^2. And only cause k and r are integer, we have countable amount of solutions. And from these solutions we found which have the biggest value of n.

    • @martin_schwarz
      @martin_schwarz 6 หลายเดือนก่อน

      Think about it this way: the distance between squares increases when the numbers increase.
      Solving r^2=n^2+204n for n we get
      n=-102+sqrt(r^2+102^2)
      =>
      k^2=r^2+102^2
      k^2-r^2=102^2
      There will be an upper limit above which the difference between the squares of any given integers k, r is greater than 102^2
      Let k=r+m to get
      2mr+m^2=102^2
      r=(102^2-m^2)/(2m)
      and because r>0 m is limited.

    • @florianbuerzle2703
      @florianbuerzle2703 6 หลายเดือนก่อน +2

      Essentially, it is because the expression n² + 204n generates only a finite amount of perfect squares.
      So we could instead solve the problem:
      „Find all positive integers n for which n² + 204n is a perfect square.“
      Using the same method shown in the video, we find that there are only four positive integer solutions:
      n = 68, 196, 768, 2500
      of which n = 2500 is the largest.

    • @Modo942000
      @Modo942000 6 หลายเดือนก่อน

      Thanks for the replies, guys, but this still doesn't answer my question. Why does the maximum exist in the first place? We reached this because we manipulated the equations. However, with the equations we started with, why does a maximum even exist in the first place?
      I get how we reached this answer; however, this answer exists BECAUSE of the manipulations we did, which introduced a new variable with different constraints. However, for the original problem that is exclusively in n, an upper bound should theoretically not exist, no? The value of n can just increase up to infinity with no issues at all.

    • @Modo942000
      @Modo942000 6 หลายเดือนก่อน

      @@florianbuerzle2703 oh ok now that explains it. Thank you

  • @Aqsin-p7p
    @Aqsin-p7p 6 หลายเดือนก่อน +2

    Hello from Azerbaijan

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน

      Hello form USA

  • @inthefogs
    @inthefogs 6 หลายเดือนก่อน

    what does he say at the end? its very strong.

    • @JohnDoe-m8i
      @JohnDoe-m8i 6 หลายเดือนก่อน

      "Never stop learning. Those that stop learning, stop living."

    • @inthefogs
      @inthefogs 6 หลายเดือนก่อน

      @@JohnDoe-m8i ohh thanks bud

  • @picturetaker607
    @picturetaker607 6 หลายเดือนก่อน +1

    I am lost , why does n not equal infinity ? can someone please explain? Thank you.

    • @Frank_golfstein
      @Frank_golfstein 6 หลายเดือนก่อน

      x2.. Me too.

    • @PaulMiller-mn3me
      @PaulMiller-mn3me 6 หลายเดือนก่อน

      I don’t understand either. Why can’t n be 2501?

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน +1

      2501 or infinity is not a perfect square

    • @PaulMiller-mn3me
      @PaulMiller-mn3me 6 หลายเดือนก่อน

      @@PrimeNewtons ah, so anything larger than 2500 and the entire radical is never again an integer

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน +1

      @PaulMiller-mn3me Both can never again be integers.

  • @coolhwipconag5770
    @coolhwipconag5770 6 หลายเดือนก่อน +1

    this is from the singapore math olympiad junior round 1 2016

  • @quzpolkas
    @quzpolkas 6 หลายเดือนก่อน +2

    Video's shaking a bit? Or just me?

    • @oreowithurea5018
      @oreowithurea5018 6 หลายเดือนก่อน +1

      Try to cut back on the coffee intake bro (just kidding you're right)

    • @PrimeNewtons
      @PrimeNewtons  6 หลายเดือนก่อน +2

      I noticed while editing. I can't explain it. I'll check the camera again. Thanks.

  • @9ybruhwt491
    @9ybruhwt491 4 หลายเดือนก่อน

    Since r=2600, recall k=n+102. Then, k=r+2=2602, n=k-102=2602-102=2500. (I did not substitute k for n+102. So I figured.)

  • @thecrazzxz3383
    @thecrazzxz3383 6 หลายเดือนก่อน +1

    I thought the "&" was a binary and in the thumbail

  • @lornacy
    @lornacy 5 หลายเดือนก่อน

    Stimulating 😊

  • @ChengxiHu-e1u
    @ChengxiHu-e1u 6 หลายเดือนก่อน

    Can someone explain where did he get the 2704 and 2500? I am a little lost here. P.S. the video is great.

    • @tessfra7695
      @tessfra7695 6 หลายเดือนก่อน

      General formula (a+b)^2= a^2 +2ab +b^2...we're trying to formulate (n+102)^2=n^2+2n(102)+102^2

    • @johnpaullogan1365
      @johnpaullogan1365 6 หลายเดือนก่อน +1

      he looked at possible factors to find ones with a difference of 204. time consuming and difficult. willing to do some long multiplication would have just used quadratic formula. of course if he hadn't chosen to solve for r and instead solved for k we could have avoided the whole thing. we knew k=n+102. if we solved for k instead of r we would have got k=n+102=51^2+1 so n=51^2-101

  • @arkae24
    @arkae24 6 หลายเดือนก่อน

    i saw this question and tried solving it this way but I didnt get the correct answer, please tell me where I went wrong.
    n(n+204) is a square number.
    so n + 204 = (k^2)n where k is some positive int.
    n = 204/(k^2 - 1)
    we need the max value of n. So k^2 - 1 should be minimum but also be a factor of 204
    so k = 2
    n = 204/3
    n = 68
    I think there is some mistake in my logic please help me here (I'm not very good at math sorry)

    • @Mrcasgoldfinch
      @Mrcasgoldfinch 6 หลายเดือนก่อน +2

      The mistake is in the second row of your solution: if n(n + 204) = k^2, then n + 204 = k^2/n, not k^2 * n.

    • @mahoremujini
      @mahoremujini 6 หลายเดือนก่อน

      I got this solution too and don’t know where I got wrong!

    • @mahoremujini
      @mahoremujini 6 หลายเดือนก่อน

      I got it!!!
      n(n+204) is a square in two ways :
      n is not a square and n divides (n+204) or
      n and n+204 are both squares

    • @PavelSVIN
      @PavelSVIN 6 หลายเดือนก่อน

      We know there is a perfect square under the square root. It means n^2+204*n=(n+k)^2 where k - some positive integer. From here we get n=k^2/(204-2*k). 204-2*k is even as it can be presented as 2*(102-k), where k is an integer. Thus k^2 is even as n is an integer, so k is even. Maximum n is when an expression 204-2*k is minimal and positive (remember n is positive and k is positive and even) - it is when k=100. n=100^2/(204-2*100)=2500

    • @mahoremujini
      @mahoremujini 6 หลายเดือนก่อน

      @@arkae24
      Please complete the line with:
      or n and n+204 are both squares

  • @tusharpandey6255
    @tusharpandey6255 5 หลายเดือนก่อน +1

    Min. Value of n will be 196

  • @madansharma2700
    @madansharma2700 6 หลายเดือนก่อน

    Prove why n cannot be infinity.

  • @lubiemuze6368
    @lubiemuze6368 6 หลายเดือนก่อน

    INFINITY ♾️ GAAAAAAAAAAAAAH

    • @lubiemuze6368
      @lubiemuze6368 6 หลายเดือนก่อน

      Wait, it isn't an integer me dummy

  • @SrisailamNavuluri
    @SrisailamNavuluri 4 หลายเดือนก่อน

    n,√(n^2+204n) are integers
    n(n+204) is a square.
    n,n+204 are squares.
    Let n=a^2,n+204=b^2
    b^2-a^2=n+204-n=204
    Since a,b are integers 204 is product of even numbers or odd numbers
    (b-a)(b+a)=2×102 =6×34
    b-a=2,b+a=102 or b-a=6,b+a=34
    b+a-(b-a)=2a=102-2=100
    a=100/2=50 or (34-6)/2=14
    n=a^2=50^2=2500 or 14^2=196
    Maximum value is 2500.

    • @thichhochoi766
      @thichhochoi766 2 หลายเดือนก่อน

      n(n+204) is a perfect square does not make n, n+204 are squares. Example (3)(3+9)=36 is a square but 3,12 are not squares. I edited the example to make it clear

    • @SrisailamNavuluri
      @SrisailamNavuluri 2 หลายเดือนก่อน

      @@thichhochoi766 sir,I did not say that 204 is a square.n+204 is a square.n is a square.
      204 is non perfect square as 5 is non perfect square.

    • @SrisailamNavuluri
      @SrisailamNavuluri 2 หลายเดือนก่อน

      @@thichhochoi766 5=9-4=3^2-2^2.
      √n=2,√(n+5)=3

    • @thichhochoi766
      @thichhochoi766 2 หลายเดือนก่อน

      @@SrisailamNavuluri 2*32 = 64 is a square but 2 and 32 are not squares. The product of 2 numbers is a square does not guarantee each number is a square. Your reasoning is flawed.