Uløselig (?) oppgave fra R2 eksamen, vår 2024

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น • 11

  • @lampemannen
    @lampemannen 6 หลายเดือนก่อน

    Takk for fin video om interessant oppgave! Hvilket program bruker du for å skrive/tegne utregningene i videoen? Ser bra ut!

  • @burger9997
    @burger9997 7 หลายเดือนก่อน +3

    Jeg henviser til forhåndssensuren på UDIR: «Kandidater som viser kompetanse i uendelige geometriske rekker, kan få 1 poeng.
    Oppgaven skal ikke tillegges avgjørende betydning i helhetsvurderingen.»

  • @myrstad_
    @myrstad_ 7 หลายเดือนก่อน

    jeg kom fram til at a_1 må være 2 eller evig, og ble veldig forvirret så satt ikke akkuratt to streker uten svaret

  • @tazyjump5377
    @tazyjump5377 5 หลายเดือนก่อน +1

    I mean I was looking back and couldn't you just do the sum of infinite geometric series and minimise hence finding the largest possible value for e^-x which is 1 as x cannot be less than 0 and since its been minimised we can conclude a1 = 1

    • @UDLno
      @UDLno  4 หลายเดือนก่อน

      The crux of the problem here, as I see it, is that the problem asks for a1 such that the smallest possible finite sum is 1.
      If a1 = 1, then the range of the sum is (1/2, infinity). In that, we COULD argue that the smallest sum would be 1/2, and therefore not correct. But another problem is shown, which is that the range of the sum is an OPEN interval, meaning it never even has a smallest value. It has an infimum, which would make the problem solvable. But even if we adjust the problem as such, a1 = 1 yields 1/2 as the infimum.
      a1 = 2 would give an infimum of 1, though, so that might be the intent of the problem. But I haven't heard anything from the author(s) of this exam.

  • @lubbnetobb
    @lubbnetobb 7 หลายเดือนก่อน +3

    jeg kom frem til at a_1 var e^(-x), for da ble s(x)=e^(-x)*e^x = e^(x-x)=e^0=1 for alle x. håper på at det ble riktig, men var en rar oppgave.

    • @chocolateeater4866
      @chocolateeater4866 7 หลายเดือนก่อน

      Fikk samme på CAS. Integrerte e^-t og fikk -e^-t + c. Definerte int^x_1(e^-t) dt som a:=-e^-x-(-e^0) som blir -e^-x+1. Definerte S, og sa S(x)=1 og løste for a_1 og fikk 1/e^x, og den er jo positiv i alle verdier.

  • @niklaseldevik6909
    @niklaseldevik6909 7 หลายเดือนก่อน

    Jeg fikk a1 = 1 😪, visste ikke at man kunne integrere med motsatte grenser

    • @olavreiersdal
      @olavreiersdal 7 หลายเดือนก่อน

      tror løsningsforslaget som ligger ute sa at a1 = 1. Men vet ikke om det er riktig.

    • @niklaseldevik6909
      @niklaseldevik6909 7 หลายเดือนก่อน

      @@olavreiersdal tipper de var ute etter a1=2 men da synes jeg de burde annulere oppgaven, siden vi har aldri lært at man kan integrere med øvre grense mindre enn nedre grense

    • @olavreiersdal
      @olavreiersdal 7 หลายเดือนก่อน +1

      Ja skjønner hva du mener, men de pleier jo alltid å ha en oppgave på slutten med noe som ikke er i pensum for å se hvordan vi klarer å løse nye problemstillinger.
      Men hvis denne oppgaven er "uløselig" er jeg 100% enig.