(Abstract Algebra 1) Definition of an Abelian Group

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 ธ.ค. 2024

ความคิดเห็น • 16

  • @ianiceman7166
    @ianiceman7166 8 ปีที่แล้ว +15

    For closure, I thought you had to show if A and B are in G, then AB is also in G?
    then can't you say that det A and det B are non zero, so det(AB)=det(A) det (B), which is non zero, so AB is invertible, which means AB is also in G?

    • @randomperson7598
      @randomperson7598 2 ปีที่แล้ว

      Yes. He just proved that the inverse of AB is B^(-1)A^(-1).

  • @lulualita5863
    @lulualita5863 2 ปีที่แล้ว +2

    is not abelian, since 0 does not exist an inverse.

  • @NotOnlyMagicMan
    @NotOnlyMagicMan 3 ปีที่แล้ว +3

    Around 1:20 I was convinced he was going to call a can of soup abelian

    • @stapleman007
      @stapleman007 2 ปีที่แล้ว

      Or 1,000 times 1,000,000

  • @hamiyed2245
    @hamiyed2245 8 ปีที่แล้ว +4

    The set of all nxn matrices with real entries under matrix multiplication. There you have said that the multiplication of (0 0) (1 0) should give the identity matrix. Actually matrix
    (0 0) (0 1) AI = A so there is no problem with that. where I is identity matrix. If am wrong plz correct me.

    • @NeelSandellISAWESOME
      @NeelSandellISAWESOME 3 ปีที่แล้ว

      I can't find a place in the video where he includes the matrix (0 0) (0 1)

  • @sinethembamkhize1780
    @sinethembamkhize1780 8 ปีที่แล้ว +6

    +learnifyable can yu explain what yu mean by the 7th & 8th(last 2 on 2nd column) groups being abelian?! Don't get that notation

  • @informativecontent4778
    @informativecontent4778 6 ปีที่แล้ว +3

    great explanation thanks sir

  • @robertadorrough3852
    @robertadorrough3852 4 ปีที่แล้ว

    Isn't the fifth Abelian group communicative? Closure, associative, identity, inverse and...?

  • @רוןאבולעפיה
    @רוןאבולעפיה 3 ปีที่แล้ว

    amazing video thank you so much!

  • @auroracoco7650
    @auroracoco7650 8 ปีที่แล้ว +1

    Thanks

  • @clyde__cruz1
    @clyde__cruz1 6 ปีที่แล้ว +5

    Do we have a billion abilian? XD