an interesting integral

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ธ.ค. 2024

ความคิดเห็น •

  • @CodexMathematica
    @CodexMathematica หลายเดือนก่อน

    a good part of mathematic

  • @ahmedsabri-ng2xx
    @ahmedsabri-ng2xx หลายเดือนก่อน

    an interesting integral

  • @dan-florinchereches4892
    @dan-florinchereches4892 หลายเดือนก่อน +1

    I would split the fractions.
    First lets work on ploynomial on denominator
    X^4=-1
    X^2=+-i
    X^2=i => x1=√2/2(1+i) x2=-√2/2(1+i)
    X^2=-i => x3=√2/2(1-i)
    X4=-√2/2(i-i).
    Now x1*x3=1/2(1+1)=1 and x1+x3=√2
    X2x4=1 and x2+x4=-√2
    So x^4+1=(x^2+√2x+1)(x^2-√2x+1)
    (Ax+B)/(X^2+√2x+1)+(Cx+D)/(X^2-√2x+1)=X^2/(x^4+1)
    (Ax+B)(X^2-√2x+1)+(Cx+D)(X^2+√2x+1)=X^2
    X=√2/2(1+i) => (D+C*√2/2(i+1))*(i+1+i+1)=+i
    D(2+2i)+2√2C*i=i
    D=0 C=1/2√2
    Similarly then A=0 B=-1/2√2
    => X^2/(x^4+1)=√2/4(1/x^2-√2x+1)-1/(x^2+√2x+1))=√2/4(1/((x-√2/2)^2+(√2/2)^2)-1/((x+√2/2)^2+(√2/2)^2))
    Now all that is left is using the identity
    Arctan'(x/a)=a/(x^2+a^2)
    I missed an x on nunerator so we need to first make the top similar to derivative of denominator first by afdind and subtracting a number which will resilt in logarithm antiderivative and then the arcatngent formula