The Gradient Operator in Vector Calculus: Directions of Fastest Change & the Directional Derivative

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 ธ.ค. 2024

ความคิดเห็น • 89

  • @Bruh-vp6qf
    @Bruh-vp6qf 2 ปีที่แล้ว +22

    Best series I found for catching up on uni maths I forgot. Goes into enough detail whilst being short enough to fit in at work

  • @pablocb3529
    @pablocb3529 2 ปีที่แล้ว +23

    Another nice graphic application of Grad is that it provides the normal direction of the surface T(x,y)=constant. This idea can be very useful for the geometrical understanding of our math problems. For any surface I can write as f(x,y)=constant, I can obtain the normal of this surface at any surface point just obtaining the Grad vector (whatever the complexity of this surface is). This directly applies to plasticity theory with respect to the yield surface and the normality rule.

    • @death_parade
      @death_parade ปีที่แล้ว +1

      Thank you for this comment.

  • @xenofurmi
    @xenofurmi 6 หลายเดือนก่อน +3

    This is what is good about the internet for education. A good succinct lecture really gets the information across. If you want to learn we are in a golden age. I am very excited for it all.

  • @zuhairalsaffar7001
    @zuhairalsaffar7001 หลายเดือนก่อน +2

    Sir, you are the best I have ever known you have done this difficult subject as easy as possible for me and for my friends so you deserve a great thank 🎉🎉❤❤

  • @TheGamshid
    @TheGamshid 2 ปีที่แล้ว +10

    Sir, You are the Best, truly intuitive. Much appreciation!

  • @PingSharp
    @PingSharp 9 หลายเดือนก่อน +2

    I have an exam on this on monday. ≈50% of students fail the course, where I study. Thank you for the great explanations

  • @mariovrpereira
    @mariovrpereira 2 ปีที่แล้ว +1

    so glad to be seeing your lecture. thank you

  • @matrub2097
    @matrub2097 2 ปีที่แล้ว +33

    Correct me if i'm wrong, but i think the radius vector is pointed from the center of the Earth to the mass. This way the minus sign in the equation of force make sense.

    • @Drdragonesk22
      @Drdragonesk22 2 ปีที่แล้ว +15

      You are absolutely correct. The minus sign gains its significance when you define a inertial system (physics term) with unit-vectors with origin at the center of the earth. One equivalent statement comes from linear algebra and the algebra of vectors.
      The physical “inertial system” is the mathematical equivalence to a set of basis vectors that roughly speaking spans a vector space, with a origin that is constant.
      So if we would say that the earth rotates around the moon, i.e. we define an inertial system at the center of the moon, then the force would change sign depending on how we choose the basis vectors, or respectively in what way we define the inertial system.
      (This is crucial in my opinion to understand Steve’s video about Coordinates and Autoencoders (…))
      I recommend Princetons book Jeremy Kasdin and Dereks “Engineering Dynamics - A comprehensive Introduction” for a more low level, yet richer, vector formalism used in dynamics. But a high level introduction as this series is worth a lot.
      Then perhaps you will see that the probability for needing to ask for correction about a fact about vectors and physics might decrease!

    • @vikraal6974
      @vikraal6974 ปีที่แล้ว

      Yes absolutely. Negative sign indicates F is opposite to the unit vector of r.

    • @m.carmencasascastillo3901
      @m.carmencasascastillo3901 8 หลายเดือนก่อน

      You're right!

  • @suttikoonkoonkor5719
    @suttikoonkoonkor5719 2 ปีที่แล้ว +5

    At 12:05, shouldn't vector r point outwards from the centre of the Earth? So the gravitational force has the direction towards the centre given the minus sign in the equation.

  • @manoj_610
    @manoj_610 2 ปีที่แล้ว +1

    Thank you, Sir
    I am eagerly waiting for the coming lectures.

  • @SUMON041
    @SUMON041 ปีที่แล้ว

    Think you sir,,,,,,love from Bangladesh 🇧🇩🇧🇩

  • @shubhamkamble
    @shubhamkamble 2 ปีที่แล้ว +3

    Always wonderful to learn from you, i tried the example of gravitational potential, quite a neat example. Thanks for the video :)

    • @brucewayne6257
      @brucewayne6257 ปีที่แล้ว

      Hey man!Are u indian?Just wondering if this helped you in your university maths?

  • @elizabethlin3813
    @elizabethlin3813 2 ปีที่แล้ว +1

    Coming to learn new knowledge!

  • @sarasabag
    @sarasabag 2 ปีที่แล้ว +1

    Really great lecture. Thank you very much!

  • @Kashif_Javaid
    @Kashif_Javaid 2 ปีที่แล้ว +1

    Keep it up. Awesome series

  • @SirZinloos
    @SirZinloos 2 ปีที่แล้ว +1

    Great explanation!

  • @RiçhàrdPere-h2v
    @RiçhàrdPere-h2v 2 หลายเดือนก่อน

    Teachings efficient and therapeutic!
    Do some more on ODE Sir

  • @alegian7934
    @alegian7934 2 ปีที่แล้ว

    love this series

  • @yousefmostafa4645
    @yousefmostafa4645 2 ปีที่แล้ว +1

    Thank you sir its a great explaining

  • @twist777hz
    @twist777hz 2 ปีที่แล้ว +4

    Dear Professor Brunton, I heard mathematicians treat the output of the gradient operator as a *row* vector (for reasons supposedly to do with differential geometry), while engineers and statisticians typically treat it as a *column* vector. I'm curious if there is a preference for either convention in the optimization / machine learning literature, as well as your own preference.

    • @wp4297
      @wp4297 2 ปีที่แล้ว +1

      Row vectors and column vectors DO NOT exist. A vector is a vector, an abstract object, independent on the reference frame or the coordinates you use. Then, you can sort the coordinates (reminding which base vectors are associated with) as you wish: if you're free to choose your convention, choose the one you're more comfortable with, if you're using some libraries check out the documentation to find the convention they're using

    • @andrewferguson6901
      @andrewferguson6901 2 ปีที่แล้ว +2

      @@wp4297 i like to project my vectors onto a cylinder so i don't have to look at all of the columns at the same time

    • @wp4297
      @wp4297 2 ปีที่แล้ว

      @@andrewferguson6901 I have not enough imagination for cylinders in high-dimensional spaces :)

  • @KamrulHasan-dp8jk
    @KamrulHasan-dp8jk 2 ปีที่แล้ว +1

    Please make a video on double curl of a vector field on a cartesian point.

  • @mar-a-lagofbibug8833
    @mar-a-lagofbibug8833 2 ปีที่แล้ว +1

    Its the small details added that fill in the missing knowledge gaps for beginners.
    Why are the vector symbol over the grad removed? I needed to know that!!!
    Thanks teacher.

    • @jackwhitestripe7342
      @jackwhitestripe7342 2 ปีที่แล้ว +1

      Gradient alone is not a vector, it is a function. When we apply specific values to a gradient function we obtain the gradient vector in a specific point in a coordinate system. The result represents a vector, then we use vector symbol over that.

  • @draganostojic6297
    @draganostojic6297 2 ปีที่แล้ว

    Thank you Steve. Enjoy your sabatical 💗

  • @anoshiravan6809
    @anoshiravan6809 ปีที่แล้ว

    thanks for your great explaination

    • @Eigensteve
      @Eigensteve  ปีที่แล้ว

      Glad you liked it!

  • @alanx4121
    @alanx4121 15 วันที่ผ่านมา

    Newton's law of gravity is proportional to 'vector r' /r^3
    vector r / r = unit vector r
    So the force vector can be written as proportional to unit vector r / r^2
    I was confused a bit.

  • @filu005
    @filu005 2 ปีที่แล้ว +2

    I have a question about calculating a gradient of gravitational potetnital:
    V = -(GmM)/r
    I can decompose r into a form where I keep each axis separate using pythagorean theorem:
    r = (x^2 + y^2 + z^2)^(1/2)
    now V equals:
    V = -(GmM)*(x^2 + y^2 + z^2)^(-1/2)
    Now I can calculate a derivative in each direction (x, y, z):
    dV/dx = -(GmM)*(-1/2)*(x^2 + y^2 + z^2)^(-3/2)*2x = x(GmM)*(x^2 + y^2 + z^2)^(-3/2) = x(GmM)/(r^3)
    y and z can be calculated correspondingly. Now, what's the next step? How do I go from this vector:
    ∇V=[dV/dx, dV/dy, dV/dz]
    to:
    F = -r(mMG)/(r^3)

    • @philipbarthelma1903
      @philipbarthelma1903 2 ปีที่แล้ว +5

      Well you basically already did it. You calculate dV/dx , dV/dy, dV/dz which will give you:
      x(GmM)/(r^3)
      y(GmM)/(r^3)
      z(GmM)/(r^3)
      respectively.
      you then substitude this into your vector ∇V=[dV/dx, dV/dy, dV/dz].
      You will get (and here i factored out the (GmM)/(r^3) from each component):
      (GmM)/(r^3) * [x , y , z]. But [x , y , z] is just your position Vector. In other Terms: its r.
      So you get your desired Equation:
      ∇V = (mMG)/(r^3) * r (where the last r in the equation is a vector).
      Since F = - ∇V we have to add a minus sign and then we are done:
      F = -(mMG)/(r^3) * r as shown in the video.

    • @filu005
      @filu005 2 ปีที่แล้ว

      @@philipbarthelma1903 Ahh I see! I got stuck on calculating partial derivatives (dV/dx,...) 🙄 the rest is clear. Thanks for the explanations!

  • @xxyz1000
    @xxyz1000 2 ปีที่แล้ว +3

    New epsode at MathFlix! 😀

  • @yahiabousseloub9217
    @yahiabousseloub9217 2 ปีที่แล้ว +2

    Sir, please can u explain augmented Lagrangian (penalty function)

  • @Play-w9z
    @Play-w9z 3 หลายเดือนก่อน

    Thank you so much

  • @curtpiazza1688
    @curtpiazza1688 ปีที่แล้ว

    Great video! Thanx! 😊

  • @rodionraskolnikov6989
    @rodionraskolnikov6989 3 หลายเดือนก่อน

    Great lecture! one thing, shouldn't the field have only "one M"? i.e., it should be the gravitational force per unit of mass

  • @giro808
    @giro808 ปีที่แล้ว

    Thank you!

  • @rm_123sm
    @rm_123sm ปีที่แล้ว

    Great explanations for easy intuitive understanding of PDEs. I however was wondering whether we can add time in these equations, and how?

    • @zishangwu1916
      @zishangwu1916 ปีที่แล้ว +1

      You can randomly take a vector, with known unit length and started from a known initial point, on a surface and calculate its maximum increasing/decreasing speed using the time as unit length increment in both x and y direction. You will use it when you are calculating the directional derivative but eventually you will not see "t" cuz what you get will be a number determined by the magnitude of the delta, unit vector, and the angle between these two vectors.

  • @krelly90277
    @krelly90277 2 ปีที่แล้ว +1

    Can I use the gradient to model the gradient of sand density on Arrakis?

  • @Tyokok
    @Tyokok 2 ปีที่แล้ว +1

    Hi Steve, do you have a video for "Field"? like what is field and what is scalar or vector field? Thank you very much!

  • @studybuddy1015
    @studybuddy1015 7 หลายเดือนก่อน

    thank you sir

  • @semihcanakca1762
    @semihcanakca1762 2 ปีที่แล้ว

    many thanks!!

  • @martinperu6207
    @martinperu6207 2 ปีที่แล้ว

    Thanks.. Some books for it?

  • @zrmsraggot
    @zrmsraggot ปีที่แล้ว

    Some hints to write V = -mMG/r into cartesian coord (x,y,z) ? I have no clue where to start thx

    • @ItahangLimbu
      @ItahangLimbu 5 หลายเดือนก่อน

      r = x^2 + y^2 +z^2

    • @MarceloKatayama
      @MarceloKatayama 3 หลายเดือนก่อน

      ​@@ItahangLimbudon't you mean r^2=x^2+y^2+z^2?

    • @ItahangLimbu
      @ItahangLimbu 3 หลายเดือนก่อน

      @@MarceloKatayama sorry forget r^2

  • @edemkumah5248
    @edemkumah5248 2 ปีที่แล้ว

    Thank you

  • @muralikrishnay2734
    @muralikrishnay2734 2 ปีที่แล้ว

    Is the concept of grad similar to maxima and minima?

  • @nemes1s_aoe
    @nemes1s_aoe 9 หลายเดือนก่อน

    Great!

  • @baki4457
    @baki4457 8 หลายเดือนก่อน

    I didn’t understand how the gravitational force is equal to mMG/r^3 , Isn’t suppoed to be 1/r^2

    • @asna-1010
      @asna-1010 5 หลายเดือนก่อน

      Me too

    • @victorlc.vabeiryusa7458
      @victorlc.vabeiryusa7458 4 หลายเดือนก่อน

      Yeah it is but he writes it in a different way -GMmr(vector)/r^3
      Since r(vector)= r r(hat) so r^3 cancel with r in the numerator and that will give you
      force=GMmr(hat)/r² r(hat) is present since force is a vector

    • @baki4457
      @baki4457 4 หลายเดือนก่อน

      @@victorlc.vabeiryusa7458ohh I see, thank you so much ❤

  • @trevorgdn
    @trevorgdn 3 หลายเดือนก่อน +2

    Some ants do fly.

  • @hagopbulbulian6642
    @hagopbulbulian6642 ปีที่แล้ว

    May I ask where is the I,j,k in nebla (delta ) why you don't put them in the column vector like [d/dx i, d/dy j, d/dz k]

    • @Syndicalism
      @Syndicalism ปีที่แล้ว +1

      In matrix notation, as seen in this video, each row will always imply a different basis direction. It is when writing a vector in component form that i-hat, j-hat, and k-hat are written explicitly to make it clear to the reader/writer that a linear combination of the scaled Cartesian (rectangular) basis is used.
      To reiterate, in matrix notation, you should already know not to add the individual components of the vector together as they are on separate rows and thus imply a different 'direction'. In component form, the only reason you know not to add the individual components of the vector together is because the basis vectors (i-hat, j-hat, k-hat) are written explicitly.

    • @Syndicalism
      @Syndicalism ปีที่แล้ว +1

      Apologies if that's confusing. It felt weird to simply say that i-hat, j-hat, and k-hat are already implied in matrix form as each row represents its own basis vector, scaled by some factor.

  • @imQuark
    @imQuark 2 ปีที่แล้ว

    How are you so good at writting backwards?

    • @rajjolal23
      @rajjolal23 7 หลายเดือนก่อน

      the video is mirrored.

  • @dojjy5798
    @dojjy5798 2 ปีที่แล้ว

    YES.

  • @douglasstrother6584
    @douglasstrother6584 ปีที่แล้ว

    UC Santa Cruz - Physics 1987

  • @gyorgyo7597
    @gyorgyo7597 2 ปีที่แล้ว +1

    Hi. So F is minus the directional derivative of V ? Excellent video.

  • @michaelolatunde1585
    @michaelolatunde1585 ปีที่แล้ว +1

    Some ants actually do fly Steve 🙂 6:18

  • @yadt
    @yadt 2 ปีที่แล้ว +2

    (Some) ants certainly can fly, to my eternal horror.

  • @nefcodes
    @nefcodes 5 หลายเดือนก่อน

    F = -GMm/r2 (NOT r cube)

    • @hiitstan
      @hiitstan 5 หลายเดือนก่อน +1

      He wrote the same thing. You are missing the directional unit vector r cap which is (r vector)/|r|. He just wrote r cap in terms of RHS and thus r² gets multiplied by another r making it r³ and instead of r cap we write r vector. Hope it's clear😊.

  • @GustavoRocha1
    @GustavoRocha1 11 หลายเดือนก่อน +1

    Is he writingevery thing mirrored???

    • @PingSharp
      @PingSharp 9 หลายเดือนก่อน

      I would assume that he mirrors the video itself

  • @erickgomez7775
    @erickgomez7775 ปีที่แล้ว

    If there are two sources of heat and the bee is unlucky, it could just stay at a non optimal point

  • @someonestolemyname
    @someonestolemyname 2 ปีที่แล้ว

    Now when I need to write gravity I can turn it into del mass instead.

  • @godfreypigott
    @godfreypigott 2 ปีที่แล้ว +1

    But *WHY* is the directional derivative given by that dot product?

    • @EdwardAlexanderSmall
      @EdwardAlexanderSmall 2 ปีที่แล้ว +2

      The (1/||v||)*v normalises the v vector (call this value v'). We normalise it because we do not care about its magnitude, we only care about it's direction, and as such the magnitude of v'=1.
      Now we have v'.(grad(f)). What we are doing with this dot product operation is projecting v' onto the gradient vector grad(f). This basically tells us how much of vector v' is pointed in the same direction as grad(f).
      If the vectors are at right angles to each other (orthogonal) then the answer will be 0 because no amount of v' points in the same direction as grad(f). If the answer is 1 then they point in the same direction, if it is -1 they point in the opposite direction.

    • @draganostojic6297
      @draganostojic6297 2 ปีที่แล้ว

      It's a projection of the gradient onto the unit vector so it's the dot product.

    • @godfreypigott
      @godfreypigott 2 ปีที่แล้ว

      @@EdwardAlexanderSmall I actually know how it works. My point was that he should be explaining this instead of just giving the result.

    • @EdwardAlexanderSmall
      @EdwardAlexanderSmall 2 ปีที่แล้ว +3

      @@godfreypigott Okay. A fair criticism, even if giving it in the form of rhetoric comes across as a little rude (expecially since it is directed at someone who is giving a well produced, advanced lecture course for completely free).
      He's definitely been through the idea of projection before in other videos and lecture material, and I'd argue that linear algebra (a topic he has covered in some detail) is a prerequisite for vector calculus. If a viewer doesn't have a good intuition for how the dot product works, this lecture course is probably one step too advanced for the viewer (as they've clearly skipped a fundamental foundation of the topic).
      If he went through everything in the absolute finest detail all the time, these videos would become lengthy and unwieldy, which would defeat the point. One of the reasons that these lectures are so good and so easy to absorb is that they don't overwhelm the viewer with superfluous information.
      (Editted to make Godfrey happy)

    • @godfreypigott
      @godfreypigott 2 ปีที่แล้ว

      @@EdwardAlexanderSmall I just told you I understand this. So I don't know why you you want to belittle me with the second half of your second paragraph.

  • @bonsairobo
    @bonsairobo 2 ปีที่แล้ว

    Small correction at 6:20. Some ants do fly.

  • @slickmorty9845
    @slickmorty9845 2 ปีที่แล้ว

    ♥♥♥♥♥♥

  • @namedrop66
    @namedrop66 2 ปีที่แล้ว

    Worst Earth ever.