Спасибо большое, за труд, очень люблю эвклидовую геометрию, тригононометрию, фрактальную геометрию ( прочитал труд Манделброта на одном дыхании), в школе был первым когда была геометрия, но алгебра увы и ах... Хотя сам юрист, с большой любовью к философии, особенно античной, в частности Гераклит. Но за геометрию большой, жирный лайк. С уважением Денис.
Случайный вывод: Задача - найти высоту, а затем площадь треугольника, зная его стороны. Решение: Назовем наш треугольник таким образом: ABC. Обозначим |AB| = a, |AC| = b, |BC| = c. Опустим высоту h из вершины C на основание, а точку пересечения будет названа D. Положим |AD| = x, тогда |DB| = =a - x. Пользуясь теоремой Пифагора (легко вывести из задачи: найти диагональ квадрата), приходим к системе h^2 + x^2 = b^2, h^2 + (a - x)^2 = c^2. Из системы: b^2 = c^2 - a^2 + 2ax, откуда x = (a^2 + b^2 - c^2)/2a. Следовательно, h = sqrt(b^2 - x^2) = sqrt(b^2 - (a^2 + b^2 - c^2)^2/4a^2) = = sqrt((a^2 + b^2 - c^2 + 2ab)(a^2 + b^2 - c^2 - 2ab))/2a = = sqrt(((a + b)^2 - c^2)((a - b)^2 - c^2))/2a = = sqrt((a + b + c)(a + b - c)(a - b + c)(a - b -c))/2a. Значит, S = ah/2 = 1/4 * sqrt((a + b + c)(a + b - c)(a - b + c)(a - b -c)). Следствие из нашей задачи - теорема косинусов, в самом деле, если по определению косинуса мы имеем тождество cos BAC = x/b => x = b cos BAC. Что дает тождество cos BAC = (a^2 + b^2 - c^2)/2ab => c^2 = a^2 + b^2 - 2abcos BAC. Эксперименты с геометрией, так сказать. Пока решал одну задачу - доказал теорему Менелая. Решал другую - Чевы...
Это как доказать площадь прямоугольника через рисования квадратов, а затем площадь треугольника посредством того же метода. В реальности было так: Посмотрел теорему Менелая, использовал ее, увидел, что нечего не дало, прибегнул к подобию, доказал Менелая. Затем Чевы... Наконец, дорисовал треугольник до параллелограмма и добил задачу, - задачу можно найти на канале "математикс" в видео "10 идей для планиметрии".
@@trushinbv Борис Викторович, добрый день! Очень хочется, чтобы вы сделали видео, в котором разобрали бы довольно редкие факты про окружность и доказали бы их. Например, угол между касательной и секущей, касательной и хордой. Разобрали бы факт, который говорит, что квадрат касательной равен произведению секущей на её внешнюю часть и прочие не самые часто встречающиеся вещи, но довольно важные для общего понимания геометрии окружности и всей геометрии в целом. Уверен, не только я буду Вам очень благодарен.
Я чуть со стула не упал, когда сам вывел теорему косинус ;D . Не думал что так просто будет, хотя частенько пользуюсь ей, но никогда не выводил. Помню времена, когда нас пугали мол ей только в крайнем случае пользоваться , ведь это тайная техника высшей математики оляля(преувеличил конечно ;) ) Спасибо за видео.
типичные следствия из теоремы синусов. Более того, даже формулы Мольвейде суть следствие теоремы синусов. Действительно, Если имеет место теорема синусов a/sin A = b/sin B = c/sin C, то пользуясь свойствами пропорции: (a + b)/(sin A + sin B) = c/sin C, отсюда (a + b)/c = (sin A + sin B)/sin C. Осталось преобразовать правую часть. Так как sin A + sin B = 2sin(A/2 + B/2) * cos(A/2 - B/2), но A + B + C = 180, поэтому A/2 + B/2 = 90 - C/2, а sin(A/2 + B/2) = sin(90 - C/2) = cos C/2. Наконец, пользуясь тем, что sin C = 2sin C/2 cos C/2, приходим к (a + b)/c = cos(A/2 - B/2)/sin C/2. Аналогично (если не складывать, а вычитать): (a - b)/c = sin(A/2 - B/2)/cos C/2.
Ну, и раздели теперь первую формулу на вторую (а че нет-то): (a + b)/(a - b) = cos(A/2 - B/2) cos C/2 / sin(A/2 - B/2) sin C/2 Слева все понятно, а вот справа не ясно че делать. Во-первых, нетрудно заметить, что справа у нас произведением котангенсов. Поэтому наше равенство будет: (a + b)/(a - b) = cot(A/2 - B/2) cot C/2. Теперь если внимательно глянуть на второй котангенс, то, ввиду того, что A + B + C = 180, откуда C/2 = 90 - A/2 - B/2, становится ясно, что он представляет собой тот же самый котангенс, но уже с суммой аргументов, а именно cot C/2 = 1/cot (A/2 + B/2). В самом деле: cot C/2 = cot (90 - A/2 - B/2) = cot (90 - (A/2 + B/2)) = = (cot 90 cot (A/2 + B/2) + 1)/(cot (A/2 + B/2) - cot 90). Так как cot 90 = cos 90/sin 90 = 0/1 = 0, то cot C/2 = 1/cot(A/2 + B/2). Ну все далее вспоминаем, что tan x cot x = sin x/cos x * cos x /sin x = 1 и окончательно пишем трофей: (a + b)/(a - b) = tan(A/2 + B/2)/tan(A/2 - B/2). Mis oligi tarvis tõestada.
Рисуй треугольник (любой, только не равнобедренный, равносторонний и прямоугольный - он должен быть произвольным, т. е. общего вида). Нас интересует радиус вписанной окружности - его и будем искать. Центр описанной окружности находится на пересечении биссектрис данного треугольника. Пусть основание (нижняя сторона) будет a, левая - b, а правая - c. Углы лежащие напротив этих сторон называем так: A, B и C. Опускаем перпендикуляры на стороны треугольника (это так, потому что у нас треугольник описан вокруг окружности, а это означает, что она касается ее, и потому его стороны - касательные, а радиус в точку касания будет перпендикулярен). Сразу понятно, что стороны делятся на какие-то отрезки. Например, основание легко представить в виде x + y, то есть a = x + y. Левая сторона аналогично делится на отрезка (причем первый - тот же x согласно свойству касательных), и поэтому b = x + z. Аналогично, c = y + z. Треугольник разбит, фактически, на много прямоугольных. Смотрим на нижние два Ясно, что его гипотенузу обоих нам не найти. Мы знаем все углы, а биссектриса делит угол пополам. Вспоминаем, что тангенс - отношение противолежащего на прилежащий. Поэтому tan B/2 = R/y. Аналогично, можно рассмотреть левый нижний треугольник tan C/2 = R/x.Теперь смотрим на верхние треугольники (прямоугольные). Оттуда выводим tan A/2 = R/z. Везде мы имеем один и тот же радиус и кучу неизвестных. Следовательно, имеем дело с системой R = z tan A/2 = x tan C/2 = y tan B/2. Теперь осталось заметить, что все наши x,y,z можно выразить через исходные a,b,c. Действительно, нужно решить систему a = x + y, b = x + z, c = y + z. Решаем ее: сложим все равенства: a + b + c = x + y + x + z + y + z = 2x + 2y + 2z = 2(x + y + z), отсюда (a + b + c)/2 = x + y + z А теперь смотри: (a + b + c)/2 - a = x + y + z - x - y = z, (a + b + c)/2 - b = x + y + z - x - z = y, (a + b + c)/2 - c = x + y + z - y - z = x. Обозначая (a + b + c)/2 через букву p (полупериметр) получаем то, что радис вписанной окружности равен: R = (p - a) tan A/2 = (p - c) tan C/2 = (p - b) tan B/2. Задача решена. Осталось добить ее тем, что тангенс - 1 делить на котангенс, да и сортировать все это по алфавиту.
Ну и на последок - что за странное свойство пропорции я использовал при выводе формул Мольвейде. Пусть у вас есть такая пропорция: x/y = u/v = k. То тогда из нее следует, что (x + u)/(y + v) = k. Действительно, та пропорция суть система: x/y = k, u/v = k. Из обоих уравнений: x = yk, u = vk. Теперь подставляем в равенство выше: (x + u)/(y + v) = (yk + vk)/(y + v)= k. Очевидно, что если у вас такая пропорция x1/y1 = x2/y2 = x3/y3 = … = xn/yn = k, то k = (x1 + x2 + x3 + … + xn)/(y1 + y2 + y3 + … + yn).
рекурсивная математика теорема Пифагора - это частный случай теоремы косинусов, получается Вы теоремы косинусов доказываете с помощью теоремы косинусов )
Вопрос по 19 заданию. Обычно в пункте в) просят найти наименьшее значение чего-либо. Наименьшее значение ассоциируется с производной. Можно ли её как-нибудь применить для решения?
Если найдешь функциональную зависимость... Уверен, что биекцию ты вряд ли отыщищь... Ну, а если найдешь, то можно. Однако нужно прибегнуть к неравенствам (Среднее Арифметическое, дедуцирующиеся из Йенсена). Выводятся они легко.
Объем шара - тройной или объемный интеграл. Тут снова идет разбиение шара на мелкие кусочки (их число бесконечно большое, а иъ объем бесконечно мал). Затем суммируется все.
а есть ли разница a/Sin[A]=b/Sin[B]=c/Sin[C], или наоборот Sin[A]/a=Sin[B]/b=Sin[C]/c для запоминания, мне кажется это пропорции и вроде разницы не должно быть, все время вспоминаю формулу но путаю что на что делиться)
Через векторы можно. Допустим у нас есть треугольник ABC, построенный на векторах AB (основание), AC (левая сторона) и BC (правая). Очевидно, что BC = AC - AB (разность векторов). Найдем скалярное произведение вектора BC по отношению к самому себе, тогда имеем тождество BC * BC = (AC - AB) * (AC - AB) = AC^2 - 2 * AB * AC + AB^2 = = AC^2 - 2AB AC cos a + AB^2. Поскольку квадрат вектора равен квадрату его длины, то переходя уже к длинам векторам, получаем BC^2 = AC^2 + AB^2 - 2AB AC cos A.
Осталось пояснить формулу скалярного произведения. Здесь нужно расположить векторы так, чтобы один лежал на оси Ох, а другой был над ним (выше его). Угол между векторам - альфа. Проецируя оба вектора на ось Ох, получим, что один из них будет таким же (он лежит на оси Ох), а другой будет равен самому себе умноженному на косинуса угла между ним и Ох (угол между векторами в нашем случае). Следовательно: ab = |a| |b| cos a.
Основное тождество - следствие из теоремы Пифагора. Если не знаешь основаное тригонометрическое тождество, то, зная Пифагора выведешь. Действительно, из тождества a^2 + b^2 = c^2 по разделению обеих частей на c^2 > 0 (сторона полоижетельна) получаем (a/c)^2 + (b/c)^2 = 1. В силу определений синуса и косинуса cos a = b/c и sin a = a/c приходим к этому тождеству (sin a)^2 + (cos a)^2 = 1. Насчет углов: тут нужно самому экспеременитировать. Задавать себе вопросы и искать ответы.
И еще совет: если с тригонометрией плохо, то попробуй осмыслить доказательство всего двух формул: sin(a + b) = sin a cos b + cos a sin b (сено кос косим сено) cos(a + b) = cos a cos b - sin a sin b. Из этих формул выводятся все другие. Например: сложив две формулы с косинусом, получим равенство: cos(a + b) + cos(a - b) = = (cos a cos b - sin a sin b) + (cos a cos b + sin a sin b) = = 2cos a cos b. Отсюда: cos a cos b = (cos(a + b) + cos(a - b))/2. Или, полагая a + b = x, a - b = y, получаем cos x + cos y = 2сos((x + y)/2)cos((x - y)/2).
@@trushinbv Спасибо что ответили! Я еще не учусь на матфаке, но было бы неплохо если бы плейлист с геометрией был "мостом" к вузовской программе (например, той же дифференциальной геометрии).
А есть видео на тему, почему +/- умножить на модуль то же самое, что +/- и умножить на скобки? Т.е. +/-[ ] => +/-( ) И вообще эту тему с заменой (x-y)² на (y-x)² или [-x] на [x] и т.д. Почему так можно спокойно делать и при этом это не влияет на О.Д.З.?
То есть почему |-x| = |x|? Говорят, что это равенство оправдано четностью функцией, ибо, если x = 2, то |-2| = |2| = 2. Если воспользоваться определением модуля, то выходит, что если x >= 0, то данное равенство приобритает вид: x = -(-x) или x = x. Обратно если x < 0, то в таком случаем имеем -x = +(-x) или -x = -x. Концепция введения величины лежит в основе следующих двух утверждений: 1) порой нужно опустить знак и оценить выражение - модуль решает эту задачу, 2) модуль - функция расстояния для симметричных чисел. (Проверить!). Квадраты: тут все просто: (x - y)^2 = (-(y - x))^2 = (-1)^2 * (y - x)^2 = (y - x)^2 >= 0.
Худший видос об теореме синусов, как можно столь простую тему сделать такой сложной, половину видео мне приходилось думать, а почему внезапно углы 180 градусов, а почему перпендикуляр внезапно это a * sinA, зашел на другое видео другого человека все сразу стало понятно, Не то что тут
@@dansheldon6955 по факту в этом видео все понятно, но только при условии просмотра предыдущих видео от него же , я когда писал это еще про тему ничего не знал, а видео для людей которые уже что-то понимают в тригонометрии и геометрии
В начале подумала,что у меня крыша поехала.
ХАХААХАХХААХ
Зхахаах
Хахахаххаххаххха
#TrushinStyle
хоаппапвфлофдлу4тьХХАВХРПХХПЬЛ
Спасибо этой жизни за то, что есть такие люди, как Борис Трушин!
Первое правило геометрии: все теоремы - это теорема Пифагора :D
я в 9 классе не знал ни одну теорему по геометрии кроме теоремы пифагора и решал на контрольные на 4-5 ))
@@kekel107 в 11 классе почти ничего не поменяется. чтобы решать 14 номер еще т. о 3-х перпендикулярах надо знать и всё.
теорема пифагора и подобие треугольников)
ха ха
@@numaliku3565 Пифагор велик но у Эйлера тоже есть теоремы
Борис Викторович, спасибо за невероятные видео! Благодаря Вам я полюбила математику!
Совсем недавно заинтересовалась математикой, и Ваши уроки для меня - пушка. Такого адекватного, без лишних деталей, понятного объяснения ещё поискать)
Красссавчик Борис! Толково, чётко и доступно, ни одного лишнего слова!
Очередное шикарное видео, спасибо
Вы большой молодец,очень нравится смотреть ваши видео,интересно и познавательно!
Спасибо большое, за труд, очень люблю эвклидовую геометрию, тригононометрию, фрактальную геометрию ( прочитал труд Манделброта на одном дыхании), в школе был первым когда была геометрия, но алгебра увы и ах...
Хотя сам юрист, с большой любовью к философии, особенно античной, в частности Гераклит.
Но за геометрию большой, жирный лайк.
С уважением Денис.
Спасибо большое за уроки!!!
Полночь, полнолуние, я смотрю канал посвящённый матану.
Вы молодец, что нам помогаете
Суббота 7:48. смотрю ваше видео, все понятно, даже утром))
Борис, вы лучший
дай бог вам здоровья
Хотелось бы теорему о трёх перпендикулярах рассмотреть.
Спасибо тебе, все разъяснил бомбезно!
Начало супер, все понятно
спасибо огромное
Шикардос))
Спасибо за видео
Хотелось бы диофантовы уравнения и доказательство что интеграл это площадь фигуры под графиком, спасибо заранее
Я в 11 классе) до егэ меньше месяца, что-то читать честно говоря лень, а вот посмотреть видосик 20-30 минут можно
Fanatik Allods на ЕГЭ есть диофантовые уравнения? 0_о
19 задание (в основном пункт "в")
NSJР оо, ясно)
@@ahady6327 о Боже,как же я тебе завидую,ты уже на 3 курсе
слишком качественный звук 👍
4:55 для бета и гамма, ..гошпаде, понял я всё.. коммент для продвижухи видео ибо аминь.
Случайный вывод: Задача - найти высоту, а затем площадь треугольника, зная его стороны. Решение: Назовем наш треугольник таким образом: ABC. Обозначим |AB| = a, |AC| = b, |BC| = c. Опустим высоту h из вершины C на основание, а точку пересечения будет названа D. Положим |AD| = x, тогда |DB| = =a - x. Пользуясь теоремой Пифагора (легко вывести из задачи: найти диагональ квадрата), приходим к системе
h^2 + x^2 = b^2,
h^2 + (a - x)^2 = c^2.
Из системы: b^2 = c^2 - a^2 + 2ax, откуда x = (a^2 + b^2 - c^2)/2a. Следовательно,
h = sqrt(b^2 - x^2) = sqrt(b^2 - (a^2 + b^2 - c^2)^2/4a^2) =
= sqrt((a^2 + b^2 - c^2 + 2ab)(a^2 + b^2 - c^2 - 2ab))/2a =
= sqrt(((a + b)^2 - c^2)((a - b)^2 - c^2))/2a =
= sqrt((a + b + c)(a + b - c)(a - b + c)(a - b -c))/2a.
Значит, S = ah/2 = 1/4 * sqrt((a + b + c)(a + b - c)(a - b + c)(a - b -c)). Следствие из нашей задачи - теорема косинусов, в самом деле, если по определению косинуса мы имеем тождество cos BAC = x/b => x = b cos BAC. Что дает тождество
cos BAC = (a^2 + b^2 - c^2)/2ab => c^2 = a^2 + b^2 - 2abcos BAC.
Эксперименты с геометрией, так сказать. Пока решал одну задачу - доказал теорему Менелая. Решал другую - Чевы...
Как ты умудрился доказать теоремы Менелая и Чевы на примере одного частного случая?
Это как доказать площадь прямоугольника через рисования квадратов, а затем площадь треугольника посредством того же метода. В реальности было так: Посмотрел теорему Менелая, использовал ее, увидел, что нечего не дало, прибегнул к подобию, доказал Менелая. Затем Чевы... Наконец, дорисовал треугольник до параллелограмма и добил задачу, - задачу можно найти на канале "математикс" в видео "10 идей для планиметрии".
Хорош...☠️
Борис Викторович, можете сделать видео про элементы треугольника?
Например, как вычислить длину биссектрисы, высоты и т.п.
Ждите, на этой неделе будет )
Спасибо )
@@trushinbv Борис Викторович, добрый день! Очень хочется, чтобы вы сделали видео, в котором разобрали бы довольно редкие факты про окружность и доказали бы их. Например, угол между касательной и секущей, касательной и хордой. Разобрали бы факт, который говорит, что квадрат касательной равен произведению секущей на её внешнюю часть и прочие не самые часто встречающиеся вещи, но довольно важные для общего понимания геометрии окружности и всей геометрии в целом. Уверен, не только я буду Вам очень благодарен.
clgiroux 28 мне кажется, все это есть )
@@trushinbv некоторые факты есть, но все разбросано по разным видео(((
Просто БОГ
Согласно традиции, рекомендуется обычно за угол альфа брать противолежащий стороне "а". Бетта - "б" и т.п. СПС
Спасибо!
вы лучший
Есть телеграмм канал
Я чуть со стула не упал, когда сам вывел теорему косинус ;D .
Не думал что так просто будет, хотя частенько пользуюсь ей, но никогда не выводил.
Помню времена, когда нас пугали мол ей только в крайнем случае пользоваться , ведь это тайная техника высшей математики оляля(преувеличил конечно ;) )
Спасибо за видео.
Можете так же рассказать про тригонометрические формулы.
Это уже есть: th-cam.com/video/oDBLJA-RDc8/w-d-xo.html
Борис Трушин спасибо, как-то проглядел.
Здравствуйте, помимо теоремы синусов ,есть теоремы тангенсов и котангенсов, вы не могли бы о них рассказать ?
типичные следствия из теоремы синусов. Более того, даже формулы Мольвейде суть следствие теоремы синусов. Действительно, Если имеет место теорема синусов
a/sin A = b/sin B = c/sin C,
то пользуясь свойствами пропорции:
(a + b)/(sin A + sin B) = c/sin C,
отсюда
(a + b)/c = (sin A + sin B)/sin C.
Осталось преобразовать правую часть. Так как
sin A + sin B = 2sin(A/2 + B/2) * cos(A/2 - B/2), но A + B + C = 180, поэтому
A/2 + B/2 = 90 - C/2, а sin(A/2 + B/2) = sin(90 - C/2) = cos C/2. Наконец, пользуясь тем, что sin C = 2sin C/2 cos C/2, приходим к
(a + b)/c = cos(A/2 - B/2)/sin C/2.
Аналогично (если не складывать, а вычитать):
(a - b)/c = sin(A/2 - B/2)/cos C/2.
Ну, и раздели теперь первую формулу на вторую (а че нет-то):
(a + b)/(a - b) = cos(A/2 - B/2) cos C/2 / sin(A/2 - B/2) sin C/2
Слева все понятно, а вот справа не ясно че делать. Во-первых, нетрудно заметить, что справа у нас произведением котангенсов. Поэтому наше равенство будет:
(a + b)/(a - b) = cot(A/2 - B/2) cot C/2.
Теперь если внимательно глянуть на второй котангенс, то, ввиду того, что A + B + C = 180, откуда C/2 = 90 - A/2 - B/2, становится ясно, что он представляет собой тот же самый котангенс, но уже с суммой аргументов, а именно cot C/2 = 1/cot (A/2 + B/2). В самом деле:
cot C/2 = cot (90 - A/2 - B/2) = cot (90 - (A/2 + B/2)) =
= (cot 90 cot (A/2 + B/2) + 1)/(cot (A/2 + B/2) - cot 90).
Так как cot 90 = cos 90/sin 90 = 0/1 = 0, то cot C/2 = 1/cot(A/2 + B/2). Ну все далее вспоминаем, что tan x cot x = sin x/cos x * cos x /sin x = 1 и окончательно пишем трофей:
(a + b)/(a - b) = tan(A/2 + B/2)/tan(A/2 - B/2). Mis oligi tarvis tõestada.
Рисуй треугольник (любой, только не равнобедренный, равносторонний и прямоугольный - он должен быть произвольным, т. е. общего вида). Нас интересует радиус вписанной окружности - его и будем искать. Центр описанной окружности находится на пересечении биссектрис данного треугольника. Пусть основание (нижняя сторона) будет a, левая - b, а правая - c. Углы лежащие напротив этих сторон называем так: A, B и C. Опускаем перпендикуляры на стороны треугольника (это так, потому что у нас треугольник описан вокруг окружности, а это означает, что она касается ее, и потому его стороны - касательные, а радиус в точку касания будет перпендикулярен). Сразу понятно, что стороны делятся на какие-то отрезки. Например, основание легко представить в виде x + y, то есть a = x + y. Левая сторона аналогично делится на отрезка (причем первый - тот же x согласно свойству касательных), и поэтому b = x + z. Аналогично, c = y + z. Треугольник разбит, фактически, на много прямоугольных. Смотрим на нижние два
Ясно, что его гипотенузу обоих нам не найти. Мы знаем все углы, а биссектриса делит угол пополам. Вспоминаем, что тангенс - отношение противолежащего на прилежащий. Поэтому tan B/2 = R/y. Аналогично, можно рассмотреть левый нижний треугольник tan C/2 = R/x.Теперь смотрим на верхние треугольники (прямоугольные). Оттуда выводим tan A/2 = R/z. Везде мы имеем один и тот же радиус и кучу неизвестных. Следовательно, имеем дело с системой
R = z tan A/2 = x tan C/2 = y tan B/2. Теперь осталось заметить, что все наши x,y,z можно выразить через исходные a,b,c. Действительно, нужно решить систему a = x + y, b = x + z, c = y + z. Решаем ее: сложим все равенства:
a + b + c = x + y + x + z + y + z = 2x + 2y + 2z = 2(x + y + z), отсюда
(a + b + c)/2 = x + y + z
А теперь смотри:
(a + b + c)/2 - a = x + y + z - x - y = z,
(a + b + c)/2 - b = x + y + z - x - z = y,
(a + b + c)/2 - c = x + y + z - y - z = x.
Обозначая (a + b + c)/2 через букву p (полупериметр) получаем то, что радис вписанной окружности равен:
R = (p - a) tan A/2 = (p - c) tan C/2 = (p - b) tan B/2. Задача решена. Осталось добить ее тем, что тангенс - 1 делить на котангенс, да и сортировать все это по алфавиту.
Ну и на последок - что за странное свойство пропорции я использовал при выводе формул Мольвейде. Пусть у вас есть такая пропорция:
x/y = u/v = k.
То тогда из нее следует, что (x + u)/(y + v) = k. Действительно, та пропорция суть система: x/y = k, u/v = k. Из обоих уравнений: x = yk, u = vk. Теперь подставляем в равенство выше: (x + u)/(y + v) = (yk + vk)/(y + v)= k. Очевидно, что если у вас такая пропорция
x1/y1 = x2/y2 = x3/y3 = … = xn/yn = k,
то
k = (x1 + x2 + x3 + … + xn)/(y1 + y2 + y3 + … + yn).
рекурсивная математика
теорема Пифагора - это частный случай теоремы косинусов, получается Вы теоремы косинусов доказываете с помощью теоремы косинусов )
супер
Стойте, стойте, подождите я ещё завис на синусах а вы уже косинусы раскладываете... Туплю, вечером ещё раз пересмотрю раз 10ть.
Борис Викторович, как вы насчёт того , чтобы снять видео про бином Ньютона? Мне например интересно, откуда в формуле взялось число сочетаний
Спасибо, приму к сведению
А какое видео про окружность?
Блин, я испугался
Вопрос по 19 заданию. Обычно в пункте в) просят найти наименьшее значение чего-либо. Наименьшее значение ассоциируется с производной. Можно ли её как-нибудь применить для решения?
В зависимости от условия задачи
Андрей К т.е. теоретически возможно её можно использовать?
Если найдешь функциональную зависимость... Уверен, что биекцию ты вряд ли отыщищь... Ну, а если найдешь, то можно. Однако нужно прибегнуть к неравенствам (Среднее Арифметическое, дедуцирующиеся из Йенсена). Выводятся они легко.
Андрей Подойницы всегда можно как-то замудрить и впендюрить все что угодно
sergei ivanov звучит интересно, узнаю об этом больше, спасибо)
Мне вот интересно, откуда взялась формула обьемa шара 4/3ПR^3?
через интеграл можно
Объем шара - тройной или объемный интеграл. Тут снова идет разбиение шара на мелкие кусочки (их число бесконечно большое, а иъ объем бесконечно мал). Затем суммируется все.
Класс! Пожалуйста, расскажите почему ось ctg параллельна оси cos, не могу сообразить
спасибо!
Нарееееезочка)
Как разобраться, почему в одних случаях корень чётной степени извлекается как модуль, в других "+","-", а в третьих только "+"?
корень из a^2 = |a|
в частности:
корень из 2^2 = 2
корень из (-2)^2 = 2
@@xz8928, опечатка )
исправил
а есть ли разница a/Sin[A]=b/Sin[B]=c/Sin[C], или наоборот Sin[A]/a=Sin[B]/b=Sin[C]/c для запоминания, мне кажется это пропорции и вроде разницы не должно быть, все время вспоминаю формулу но путаю что на что делиться)
кеш есть разница) sinα/ Α = 2R, а A/sinα = 1/2R
@@lexgoalkeeper7906 он же говорит про обычную теорему, а не расширенную.
Я в начале посмотрел и психанул.
Можно пожалуйста разобрать, откуда появилась теорема Пифагора ?
Да, скоро и про это будет )
появилась из подобия трех прямоугольных треугольников с одной общей высотой, вроде бы
оу ее всё понятно спс
Я кое что не понял про теорему синусов : если то, что мы проделали с углом альфа, проделаем с другими углами, то у нас не получится то же самое
Почему в моем детстве не было ютуба и таких роликов?
Снимите видео о том как следует изучать математику?
Есть такое видео: th-cam.com/video/_NNvp9S3nk8/w-d-xo.html
Пожалуйста, объясните, почему сторона получается а×sin альфа (7:30)?
Синус альфа в этом случае высота/a. Если мы высота/a домножим на a, то получится высота
класс
А можно ли теорему косинусов доказать без знаний из области тригонометрии?(про углы,дополняющие друг друга до 180 и осн.триг.тождество)
Через векторы можно. Допустим у нас есть треугольник ABC, построенный на векторах AB (основание), AC (левая сторона) и BC (правая). Очевидно, что BC = AC - AB (разность векторов). Найдем скалярное произведение вектора BC по отношению к самому себе, тогда имеем тождество
BC * BC = (AC - AB) * (AC - AB) = AC^2 - 2 * AB * AC + AB^2 =
= AC^2 - 2AB AC cos a + AB^2.
Поскольку квадрат вектора равен квадрату его длины, то переходя уже к длинам векторам, получаем BC^2 = AC^2 + AB^2 - 2AB AC cos A.
Осталось пояснить формулу скалярного произведения. Здесь нужно расположить векторы так, чтобы один лежал на оси Ох, а другой был над ним (выше его). Угол между векторам - альфа. Проецируя оба вектора на ось Ох, получим, что один из них будет таким же (он лежит на оси Ох), а другой будет равен самому себе умноженному на косинуса угла между ним и Ох (угол между векторами в нашем случае). Следовательно:
ab = |a| |b| cos a.
Основное тождество - следствие из теоремы Пифагора. Если не знаешь основаное тригонометрическое тождество, то, зная Пифагора выведешь. Действительно, из тождества a^2 + b^2 = c^2 по разделению обеих частей на c^2 > 0 (сторона полоижетельна) получаем (a/c)^2 + (b/c)^2 = 1. В силу определений синуса и косинуса cos a = b/c и sin a = a/c приходим к этому тождеству (sin a)^2 + (cos a)^2 = 1. Насчет углов: тут нужно самому экспеременитировать. Задавать себе вопросы и искать ответы.
И еще совет: если с тригонометрией плохо, то попробуй осмыслить доказательство всего двух формул:
sin(a + b) = sin a cos b + cos a sin b (сено кос косим сено)
cos(a + b) = cos a cos b - sin a sin b.
Из этих формул выводятся все другие. Например: сложив две формулы с косинусом, получим равенство:
cos(a + b) + cos(a - b) =
= (cos a cos b - sin a sin b) + (cos a cos b + sin a sin b) =
= 2cos a cos b.
Отсюда: cos a cos b = (cos(a + b) + cos(a - b))/2. Или, полагая a + b = x,
a - b = y, получаем cos x + cos y = 2сos((x + y)/2)cos((x - y)/2).
sergei ivanov Спасибо!
Хотелось бы побольше геометрии, особенно чтобы пересекалось с вузовской (матфаковской), чтобы потом было проще.
А что такое матфаковская геометрия?
@@trushinbv Спасибо что ответили! Я еще не учусь на матфаке, но было бы неплохо если бы плейлист с геометрией был "мостом" к вузовской программе (например, той же дифференциальной геометрии).
Было бы интересно узнать что такое дискриминант, зачем он нужен и что представляет)
Это уже есть: th-cam.com/video/6wUcOhBCFlw/w-d-xo.html
спасибо, не увидел что-то
👍
А есть видео на тему, почему +/- умножить на модуль то же самое, что +/- и умножить на скобки? Т.е. +/-[ ] => +/-( )
И вообще эту тему с заменой (x-y)² на (y-x)² или [-x] на [x] и т.д. Почему так можно спокойно делать и при этом это не влияет на О.Д.З.?
То есть почему |-x| = |x|? Говорят, что это равенство оправдано четностью функцией, ибо, если x = 2, то |-2| = |2| = 2. Если воспользоваться определением модуля, то выходит, что если x >= 0, то данное равенство приобритает вид: x = -(-x) или x = x. Обратно если x < 0, то в таком случаем имеем -x = +(-x) или -x = -x. Концепция введения величины лежит в основе следующих двух утверждений: 1) порой нужно опустить знак и оценить выражение - модуль решает эту задачу, 2) модуль - функция расстояния для симметричных чисел. (Проверить!). Квадраты: тут все просто: (x - y)^2 = (-(y - x))^2 = (-1)^2 * (y - x)^2 = (y - x)^2 >= 0.
c²=a²+b²-2abcosα??
"2 минутки не жалко"- ДТМ В Узбекистане🌚🤐🤣😶😣😭🗿👀
Привет из 2022!
Привет из 2024
а я теорему косинусов доказывал через векторы и их скалярные произведения
7:25 почему? Иногда вообще не понимаю вас.
Вы знаете, что такое синус и косинус?
@@trushinbv А, я понял. Прошу прощения. Не думал что это настолько просто. Я мыслил слишком прямолинейно.
Mulțumesc pentru explicații !
1:55 я один офигел на этом моменте?
Каждый день рисует. От 6-12 раз
У него на морде написано,что один из лучших...
Так я не понял, теорема синусов. Если хорда на синус угла = 2R значит все 3 треугольника с прямыми углами? Когда b/sin alpha, c/sin alpha
Йота кошерно
Блин, просто косинусы вообще не понимаю, а синусы изи, пишу матем на 70 баллов, а косинусы не понимаю 🤦
Все равно не понял , видно я безнадежен вроде неплохо знаю профиль , а вот геометрия не дается (
Рекомендую учебник "геометрия за 24 часа". Там приведены все основные(и не только) факты с доказательствами, начиная с того, что такое угол
ну вообще не мудрено, что все из пифагора следует, ведь sin и cos придумали специально для прямоугольных треугольников аха
начал смотреть видео в надежде понять теоремы благодаря упрощённому объяснению ,но в итоге запутался ещё больше.....
Ничего не поняла 🫠
Никогда не спорьте с Борей. Боря всегда прав.
Худший видос об теореме синусов, как можно столь простую тему сделать такой сложной, половину видео мне приходилось думать, а почему внезапно углы 180 градусов, а почему перпендикуляр внезапно это a * sinA, зашел на другое видео другого человека все сразу стало понятно, Не то что тут
А ну скинь видео этого человека. Уверен, проще рассказать не получится
@@dansheldon6955 по факту в этом видео все понятно, но только при условии просмотра предыдущих видео от него же , я когда писал это еще про тему ничего не знал, а видео для людей которые уже что-то понимают в тригонометрии и геометрии
Более тупое вступление, больше чем на 40 секунд ещё поискать нужно....
для тупого треугольника мало что отличается...
саня булкин это ты???
Абракадабра ка кая то!
Медики смотря это сидят в недумении от теоремы носовых пазухов
Косинусов теорема как то более интуитивна.
Спасибо!