Cauchy Schwarz Application

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ธ.ค. 2024

ความคิดเห็น • 71

  • @i_amscarface_the_legend9744
    @i_amscarface_the_legend9744 3 ปีที่แล้ว +31

    Basically, we get similar inequalities with more than three numbers, if we use n number the product will be greater than n^2 ! What is nice about that proof is that it is so simple! Thank u Dr.Peyam.

    • @MathSolvingChannel
      @MathSolvingChannel 3 ปีที่แล้ว +2

      I have a direct proof. Just expand it, so it is equivalent to prove a/b+a/c+b/a+b/c+c/a+c/b >= 6,
      then we use the inequality (a1+a2+...+a6)/6 >= (a1*a2*...*a6)^(1/6)
      Done!

    • @TanmayGoswami-b8k
      @TanmayGoswami-b8k 7 หลายเดือนก่อน

      @@MathSolvingChannel nice one lol

  • @ahmadtariq3960
    @ahmadtariq3960 3 ปีที่แล้ว +12

    Another nice proof is here . Take g(x)=1/x then g is convex by property of convex function g((x1+x2+x3)/3)

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      That’s really nice too

  • @firi4737
    @firi4737 3 ปีที่แล้ว +3

    Another proof: Without limiting generality we can say that a, b, c > 0 (if all negative then get two -1 from both factors and get the same with positives). Now use means inequalities for both factors a + b + c >= 3(abc)^1/3. 1/a + 1/b + 1/c >= 3(1/abc)^1/3. Multiply inequalities and get the needed one.

  • @archimidis
    @archimidis 3 ปีที่แล้ว +3

    Here's a proof using only high school algebra.
    Since [a+b+c]*[1/a+1/b+1/c]=a/b+b/a+b/c+c/b+c/a+a/c+3 it's enough to show that a/b+b/a+b/c+c/b+c/a+a/c>=6
    Due to symmetry it's enough to show that a/b+b/a>=2 or equivalently a^2 + b^2 >= 2ab if we multiply by a*b which is positive by assumption. But this is always true since [a-b]^2>=0 QED

  • @CjqNslXUcM
    @CjqNslXUcM 3 ปีที่แล้ว +13

    Wusste gar nicht, dass du Deutsch sprichst! :) Tolles Video, Grüße aus Dresden!

  • @toaj868
    @toaj868 3 ปีที่แล้ว +8

    What's wonderful about this solution to me is that my first thought upon seeing it was something along the lines of- expanding it out won't take me anywhere but if only I could get away with multiplying only the terms I want to- which is exactly what a dot product would allow one to do!

  • @rehaanali8145
    @rehaanali8145 3 ปีที่แล้ว +9

    for us AM HM inequality is used but this is a beautiful proof than classics

  • @Unchained_Alice
    @Unchained_Alice 3 ปีที่แล้ว +9

    Haven't heard the name Bunyakovsky for years. Came across him when thinking about a question that could be reduced to the conjecture about certain polynomials generating infinite primes.
    It was about if all natural numbers can be expressed as the difference of a prime and a square. In fact if his conjecture is true, there are infinite ways to do it!

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      Interesting!!!

    • @Unchained_Alice
      @Unchained_Alice 3 ปีที่แล้ว +1

      Doesn't work of course for the difference of a square and a prime.
      For the first, p - x² = N -> x² + N = p
      But the second case is, x² - p = N -> x² - N = p
      Clearly the second can be factored for some N values so there are natural numbers that can't be written like that. But x² + N (where N is any natural number) is irreducible over the integers, has a positive leading coefficient, and has gcd of 1 (for x=1,2...) so satisfies the conditions. But the conjecture is unproven sadly.
      Unrelated to this video but reminded me of it when I heard that name!
      Pretty interesting at first that the first (probably) always works but the second doesn't always.

  • @the_nuwarrior
    @the_nuwarrior 3 ปีที่แล้ว

    3:04 because x^2 is a monotonic function and keeps the inequality

  • @willyh.r.1216
    @willyh.r.1216 3 ปีที่แล้ว +3

    I knew Cauchy Schwartz inequality, but I never heard about Bunyakowsky name. Anyway, it's a straightforward elegant proof, thanks 4 posting it Doc.

  • @alphaomega3944
    @alphaomega3944 3 ปีที่แล้ว +2

    Well done, professor!

  • @uelssom
    @uelssom 3 ปีที่แล้ว +1

    beautiful proof

  • @MathSolvingChannel
    @MathSolvingChannel 3 ปีที่แล้ว +2

    I have a direct proof. Just expand it, after subtracting 3 on both sides, then it is equivalent to prove a/b+a/c+b/a+b/c+c/a+c/b >= 6,
    then we use the inequality (a1+a2+...+a6)/6 >= (a1*a2*...*a6)^(1/6)
    Done!

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      It’s nice, but AM GM is as direct as Cauchy schwarz

    • @MathSolvingChannel
      @MathSolvingChannel 3 ปีที่แล้ว

      @@drpeyam fast reply!

    • @evgeniykossiy4649
      @evgeniykossiy4649 3 ปีที่แล้ว

      You can also notice that in this case you have three pairs of type x+1/x ( a/b+b/a, a/c+c/a, b/c+c/b), and we know that function f(x)=x+1/x has max at (-1,-2)and min at (1,2), therefore if you need same sign a,b and c, you have two options: a,b,c left side 0 -> left side>=6.

    • @MathSolvingChannel
      @MathSolvingChannel 3 ปีที่แล้ว

      @@evgeniykossiy4649 right, so they are de-composited into 3 pairs, nice!

  • @rikhalder5708
    @rikhalder5708 3 ปีที่แล้ว +2

    Very beautiful proof

  • @MrRyanroberson1
    @MrRyanroberson1 3 ปีที่แล้ว +1

    Consider the 1-dimensional functions a(x) = x, b(x) = 1/x. f = a * b (multiply the outputs)
    f(1) = 1, in fact f(x) = 1, with the fillable exception of 0. Therefore there is no value of x such that f(x) < 1. Therefore f(x) >= 1.
    Consider the n+1-dimensional functions a(x,Y) = x + a(Y), b(x,Y) = 1/x + b(Y).
    b is an associative and commutative function, as is a.
    f(1,Y) = n+1 when all entries of Y are 1.
    df(x,Y)/dx = da(x,Y)/dx b(x,Y) + a(x,Y) db(x,Y)/dx
    da(x,Y)/dx = 1
    db(x,Y)/dx = -1/x^2
    df(x,Y)/dx = b(x,Y) - a(x,Y)/x^2
    = 1/x + b(Y) - 1/x - a(Y)/x^2
    = b(Y) - a(Y)/x^2
    the derivative of f(x,Y) in x is f(Y).
    Notice: f(x,Y) = f(-x,-Y); f(0,Y) is undefined.
    WLOG, assume x > 0.
    df(1,Y)/dx = b(Y) - a(Y)
    df(x>1,Y)/dx = b(Y) - a(Y)/x^2
    df(00, y=1 is the local minimum. For each x

  • @chaparral82
    @chaparral82 3 ปีที่แล้ว

    Yes Cauchy-Schwarz works, but in fact it is quite easy. Expand and you will get (a/b +b/a) + (b/c + c/b) + (a/c + c/a) >= 6
    replace a/b = p, b/c = q, a/c= r, then you get (p+1/p) + (q + 1/q) + (r + 1/r) >=6. And this is true because p + 1/p >= 2 for any positive p and has a minimum 2 at p = 1.

  • @parry9842
    @parry9842 3 ปีที่แล้ว

    Loved the explanation, Dr. Peyam! Feels great to revisit these beautiful mathematical derivations from when I was preparing for the IITs.
    The above can be solved directly too, right?
    I basically expanded the original expression:
    (a + b + c)(1/a + 1/b + 1/c)
    = 1 + 1 + 1 + a/b + a/c + b/a + b/c + c/a + c/b.
    Now, a/b + b/a >= 2*sqrt(a/b * b/a) = 2
    Similarly,
    a/c + c/a >= 2, and
    b/c + c/b >= 2.
    The original expression therefore resolves as:
    (a + b + c)(1/a + 1/b + 1/c) >= 3 + 2 + 2 + 2 = 9.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +2

      The sqrt thing is literally Cauchy Schwarz

    • @parry9842
      @parry9842 3 ปีที่แล้ว

      @@drpeyam Agreed, your method was more elegant :-)

  • @michaelz2270
    @michaelz2270 3 ปีที่แล้ว

    I don't think I've seen this proof of the AM-HM inequality before, nice video.

  • @mohammadrehan8564
    @mohammadrehan8564 3 ปีที่แล้ว

    You made it so simple sir❤️

  • @antoniocampos9721
    @antoniocampos9721 3 ปีที่แล้ว

    Amazing solution !!

  • @yoav613
    @yoav613 3 ปีที่แล้ว +4

    Namely and wlog in the same video,blackpenredpen is so proud of you😃

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      😂😂😂

    • @blackpenredpen
      @blackpenredpen 3 ปีที่แล้ว +5

      I am!

    • @Happy_Abe
      @Happy_Abe 3 ปีที่แล้ว

      @@blackpenredpen these comments are amazing!

  • @Inspirator_AG112
    @Inspirator_AG112 3 ปีที่แล้ว

    Do not reduce just cancel the fractions to (1+1+1)!

  • @icew0lf98
    @icew0lf98 3 ปีที่แล้ว

    let x≥0, then we can prove (1+x + 1/(1+x)) ≥ 2
    assume the opposite: 1+x + 1/(1+x) < 2 then x+1/(1+x) < 1 then 1/(1+x) < 1-x multiply both sides by 1+x
    we get 1 < 1-x^2 which is a contradiction, now from this it follows that a positive number plus its reprocical is greater than 2, now we can just expand (a+b+c)(1/a+1/b+1/c) to get
    3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) ≥ 3+2+2+2=9

  • @busingyefavour9477
    @busingyefavour9477 ปีที่แล้ว

    Maybe apply AM HM inequality to a,b and c

  • @tgx3529
    @tgx3529 3 ปีที่แล้ว +2

    It's fackt, if I use a>0,b>0,c>0 And a+b+c= constant, then I take the method Lagrange of multiplikátor, there are 3" the same "eqv., there is the extrem (minimum) for x=y=z

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      Works too 😁

  • @lazarusisaacng
    @lazarusisaacng 3 ปีที่แล้ว

    I think this proof method called Triangle Inequality, because I found by my school teaching book. Right?
    And my book has also introduced this proof method called Cauchy-Schwarz Inequality.
    However, I think AM HM can be proofed easier.

  • @dylank6191
    @dylank6191 3 ปีที่แล้ว

    So it should work for a = 2pi, b = 0 and c = -2pi too, shouldn't it? After all, they have the same sine ... :)

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      No 0 is neither positive nor negative, also 1/0 is not defined

    • @dylank6191
      @dylank6191 3 ปีที่แล้ว

      @@drpeyam Yeah I know, I wanted to make a little pun with sign/sine :D

  • @armacham
    @armacham 3 ปีที่แล้ว

    Another way to prove: define f(a,b,c) = (a + b + c)(1/a + 1/b + 1/c) so we are trying to prove f(a,b,c) >= 9
    second, establish by parallelism that all positive is the same as all negative, so you only need to consider the case where a,b,c > 0
    you can do this by showing f(h, i, j) = f(-h, -i, -j)
    now multiply it out, you get:
    a/a + a/b + a/c + b/a + b/b + b/c + c/a + c/b + c/c = 9
    3 + (a/b + b/a) + (a/c + c/a) + (b/c + c/b) >= 9
    (a/b + b/a) + (a/c + c/a) + (b/c + c/b) >= 6 = 2 + 2 + 2
    if you can show prove the following three things, you've got your proof
    (a/b + b/a) >= 2
    (a/c + c/a) >= 2
    (b/c + c/b) >= 2
    by parallelism, if you prove any one of those three things, you've proven the other two. So you only need to prove that a/b + b/a >= 2 when a and b are both positive real numbers
    this leads to three cases: ab
    a=b is easy enough to prove, 2 >= 2, ez
    by parallelism proving the case where ab
    so the only thing left to do is to prove that when 0 < a < b, a/b + b/a >= 2; after you prove that, you proved everything
    let's introduce a new variable z, z > 0
    b = a + z
    substitute that into the equation
    a/(a+z) + (a+z)/a >= 2
    you know that a and a+z are both greater than zero (because a and z are both greater than zero) so you can safely cross-multiply without changing the direction of the "greater than or equal to" sign
    aa + (a+z)(a+z) >= 2a(a+z)
    aa + aa + 2az + zz >= 2aa + 2az
    subtract 2aa from both sides
    2az + zz >= 2az
    subtract 2az from both sides
    zz >= 0
    we know this is true simply because z is a real number, this is true for all real numbers
    and that's another way to prove the inequality

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      You don’t need cases for the ab part, just put under a common denominator and use (a-b)^2 >= 0

  • @KarlMarX_93
    @KarlMarX_93 3 ปีที่แล้ว

    Very nice proof! I like C-S inequality. Today I've found very interesting problem.
    From Fermats Little Theorem we have 2^(p-1)-1 is divided by p. But I can't proof that 2^(p-1) -1 is never divided by p^2. Could you please make video about that? :D
    Greetings!

  • @jameskary5140
    @jameskary5140 3 ปีที่แล้ว

    That was super cool

  • @tonyhaddad1394
    @tonyhaddad1394 3 ปีที่แล้ว +1

    (a-b)^2 >=0
    a^2 -2ab + b^2 >=0
    a^2 + b^2 >= 2ab
    (a^2 + b^2)/ab >= 2
    (a/b) + (b/a) >= 2 (wlog suppose a,b,c > 0 )
    from here we are done beacaus the expantion of the product is equal to
    1+1+1 + (a/b + b/a) + (a/c + c/a) + (b/c + c/b) which is >= 3 + 2 + 2 + 2
    = 9 , proof complete !!!! (Negative (a,b,c work the same )

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      Beautiful

    • @tonyhaddad1394
      @tonyhaddad1394 3 ปีที่แล้ว

      @@drpeyam thank u 💓💓

  • @mainak8475
    @mainak8475 3 ปีที่แล้ว

    Beautiful

  • @rikhalder5708
    @rikhalder5708 3 ปีที่แล้ว +1

    I have a question. What's important to define vector space.Please reply me. 😀😀😀😀😀😃

  • @meinname9747
    @meinname9747 3 ปีที่แล้ว

    I was confused by the german in the end of the video xD

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      Hahaha

  • @brendanlawlor2214
    @brendanlawlor2214 3 ปีที่แล้ว

    Wot a beaudy....never guessed to use the Shwarz inequality 😜

    • @azzteke
      @azzteke 3 ปีที่แล้ว

      beauty - Schwarz!

  • @lacuentadevideos
    @lacuentadevideos 3 ปีที่แล้ว +1

    how about engineers solution to try 1? 1+1+1(1/1+1/1+1/1) = 9 SOLVED!! did I mis something???

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      Yes you did, you had to show this is true for all a b c

    • @lacuentadevideos
      @lacuentadevideos 3 ปีที่แล้ว +1

      sorry was a probe, not to find a solution

  • @BrynSCat
    @BrynSCat 3 ปีที่แล้ว

    I think it is only 9 if you ignore the imaginary part,you have probably rotated these using Sqrt ??.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      The quantity is positive

  • @BrynSCat
    @BrynSCat 3 ปีที่แล้ว

    sqrt 1 = +- 1 ?

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +4

      No sqrt(1) = 1

    • @BrynSCat
      @BrynSCat 3 ปีที่แล้ว

      @@drpeyam I would see it as an event horizon in Projective Geometry Algebra

  • @beautyofmath6821
    @beautyofmath6821 3 ปีที่แล้ว

    Lovely!

  • @akshatjangra4167
    @akshatjangra4167 3 ปีที่แล้ว

    Nice!

  • @Bedoroski
    @Bedoroski 3 หลายเดือนก่อน

    Classic ❤

  • @emanuellandeholm5657
    @emanuellandeholm5657 3 ปีที่แล้ว

    9 es gibt doch nichts! :D

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      Ja genau :D

  • @rikhalder5708
    @rikhalder5708 3 ปีที่แล้ว +3

    First comment sir. 😀😀😀😄😄