INDIAN || 99% Students Failed || A Nice Olympiads Exponential Problem |

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ม.ค. 2025

ความคิดเห็น • 5

  • @antoniopedrofalcaolopesmor6095
    @antoniopedrofalcaolopesmor6095 12 วันที่ผ่านมา

    a+a^2+a^3+a^4+a^5 = a(1-a^5)/(1-a)
    This formula is the sum of five terms of a geometric sequence with first term a and reason a, i.e each term is obtained from the previous one multiplying by a.
    Now just substitute a=2^3 and we get
    2^3(1-2^15)/(1-2^3) =
    -8/7(1-2^15) (1)
    We now just have to calculate
    2^15 = 2^6*2^6*2^3 = 64*64*8 = 4096*8
    = 32768
    Substitute 2^15=32768 in (1) and you get
    -8/7*(1- 32768)
    =(-8)*(-4681)
    =37448

    • @antoniopedrofalcaolopesmor6095
      @antoniopedrofalcaolopesmor6095 12 วันที่ผ่านมา

      Well, I must admit your method is better though, because you only have to calculate 9*64*65+8=37448

    • @antoniopedrofalcaolopesmor6095
      @antoniopedrofalcaolopesmor6095 12 วันที่ผ่านมา

      But still you do not need a calculator to directly calculate the powers of 2 and sum to get the result.
      2^3=8
      2^6=2^3*2^3=8*8=64
      2^9=2^6*2^3=64*8=512
      2^12=2^6*2^6=64*64=4096
      2^15=2^12*2^3=4096*8=32768
      So the sum is
      8+64+512+4096+32768 =
      37448

    • @antoniopedrofalcaolopesmor6095
      @antoniopedrofalcaolopesmor6095 12 วันที่ผ่านมา

      Whatever method we choose no calculator is needed but your method requires the least calculations, so well done sir!

  • @Alyx-yc7lz
    @Alyx-yc7lz 19 วันที่ผ่านมา

    hi