Visualize Different Matrices part2 | SEE Matrix, Chapter 1

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 พ.ย. 2024

ความคิดเห็น • 96

  • @JacemHagui
    @JacemHagui 9 หลายเดือนก่อน +43

    This channel is criminally underrated, watching the video i was baffled by how well explained and how WELL EDITED THIS IS, I cannot fathom the amount of work that went into this especially the visualisations ! I thought this channel had millions of subscribers and i was wondering how i missed it, only 9K ?!!! I'm sorry this is outrageous.
    PS: I think 3Blue1Brown would definitely be proud.

  • @emepicuta3899
    @emepicuta3899 4 หลายเดือนก่อน +9

    This is magic. You are an incredibly talented math communicator. A billion thanks for your content.

  • @BabaBoee5198
    @BabaBoee5198 2 หลายเดือนก่อน +3

    The world needs you bro

  • @NaaneVinu
    @NaaneVinu หลายเดือนก่อน +2

    You just brought the whole linear algebra of quintals of books of one full academic year less than an hour of enjoyable stuff to the senses of even common people. Kudos. Thank you very much.

  • @raedhuman520
    @raedhuman520 3 หลายเดือนก่อน +3

    you made 4 videos on topics i didnt fully understand and just dipped lmao. legend

  • @DeniseLunna
    @DeniseLunna ปีที่แล้ว +11

    In these 2 parts I could say I've learnt more about matrices than (sadly) during the high school and even university courses on linear algebra. It gave me so much needed intuition behind all those theoretical concepts. I could only wish our educational system was so engaging and demonstrative like these videos! Thank you very much!
    This channel deserves much more attention! ❤

  • @lucasmsobrinho
    @lucasmsobrinho 3 หลายเดือนก่อน +2

    I deeply appreciate your videos on matrix visualization, bro. I always "struggled" with matrices and linear algebra. Now you gave powerful tools for interpretation and intuition behind every single concept behind them.
    Great content. Impressive animations and sound effects. A piece of art.

  • @mika5452
    @mika5452 หลายเดือนก่อน +1

    thanks for making me fall in love with math all over again

  • @adaslesniak
    @adaslesniak 8 หลายเดือนก่อน +2

    Awesome, simply awesome. Only 51 comments for such a fabulous job is just not fair.

  • @juandavidrengifo8316
    @juandavidrengifo8316 ปีที่แล้ว +4

    Please do not stop doing videos, are just invaluable.

  • @greergalant5510
    @greergalant5510 2 ปีที่แล้ว +13

    Looking forward to Chapter 2 !!

  • @iamnotsure237
    @iamnotsure237 3 หลายเดือนก่อน +2

    Dude unfortunately we are only told to calculate them without any meaning. Now that I know the meaning it all makes sense. Thank you pouring so much information into one single video

  • @ghostpeppered4524
    @ghostpeppered4524 2 หลายเดือนก่อน

    This video was beautiful and emotional. Thank you

  • @TungNguyen-k6y5x
    @TungNguyen-k6y5x หลายเดือนก่อน +1

    The music is unexpectedly cool for a Math video

  • @CanDoSo_org
    @CanDoSo_org ปีที่แล้ว +2

    This is really great. You will get a better understanding at 3:39 with a unit circle.

  • @junj1023
    @junj1023 ปีที่แล้ว +6

    I like the character development of the potato!

  • @guilhermecampos8313
    @guilhermecampos8313 10 หลายเดือนก่อน +1

    Man, these videos are gold!

  • @terenceteo1470
    @terenceteo1470 11 หลายเดือนก่อน

    It's a great piece to summarize a hard topic. He has also made it very simple with the computer graphics. I've learnt linear algebra from Prof G. Strang and this just gives it life to explain those hard topics.

  • @SRAVANAM_KEERTHANAM_SMARANAM
    @SRAVANAM_KEERTHANAM_SMARANAM ปีที่แล้ว

    Shared it with all my friends as a token of gratitude.

  • @luisantoniojonguitudindale6000
    @luisantoniojonguitudindale6000 ปีที่แล้ว +2

    Keep doing these videos man, We just love them!

  • @TayyabaSajjad-j3f
    @TayyabaSajjad-j3f 3 หลายเดือนก่อน

    Please upload more videos these are extremely helpful!

  • @davidroux7987
    @davidroux7987 5 หลายเดือนก่อน

    A lovely channel. Personally I wish there were no music, but the clear examples are golden.

  • @nawfaljafri
    @nawfaljafri 6 หลายเดือนก่อน

    for those confused why is sqrt(2)/2 a unit vector, cuz at least I thought it should be equal to 1, here's the proper explanation:
    A unit vector is a vector with a magnitude of 1. we find magnitude using |v| =√(x^2 + y^2) or also known as the distance formula between points OR ALSO KNOWN AS THE PYTHAGORUS THEOREM-ish ("-ish" cuz Pythagoras theorem is for right-angle triangles but it's fine it works here as well cuz when finding distance from two points, we can just imagine the distance to be a hypotenuse of an imaginary right-angle triangle and then apply the formula using √(x^2 + y^2) where y is the 'rise' and x is the 'run') .
    normally, |v| =√ (1^2 + 0^2) = 1 OR |v| =√ (0^2 + 1^2) = 1, hence they're a unit vector, but it's not always limited to that.
    The expression √2/2 can represent the x or y component of a unit vector in two dimensions. For instance, normally if you have a unit vector pointing in the positive x-direction, its x-component would be 1 and its y-component would be 0. However, if you have a unit vector pointing at a 45-degree angle from the positive x-axis aka √2/2, both its x and y components would be √2/2, and the magnitude of the vector formed by these components would indeed be 1. This is because when you square and add the components, you get 1, then √1 is still 1, hence satisfying the condition of being a unit vector.

  • @aitorolaso1352
    @aitorolaso1352 หลายเดือนก่อน

    magical video

  • @adreemaa5102
    @adreemaa5102 3 หลายเดือนก่อน

    insane - many thanks for this!!!

  • @synthetic_me
    @synthetic_me 9 หลายเดือนก่อน

    Thank you for this fantastic video!

  • @jyotsnachoudhary8999
    @jyotsnachoudhary8999 ปีที่แล้ว

    These videos are invaluable! Thanks a lot. Please create more of such videos.

  • @mujumdarshaunakhrishikeshc1076
    @mujumdarshaunakhrishikeshc1076 9 หลายเดือนก่อน

    nujabes in the background with anime characters to explain. 10/10 banger

  • @rb9025
    @rb9025 10 หลายเดือนก่อน

    Thank you so much love from india. You sorted out Lot of things

  • @NathenZ-s3w
    @NathenZ-s3w 4 หลายเดือนก่อน

    Visualizing matrix helped me to lock in e knowledge and make sense of it. Thank you 🫡

  • @martin_quarto
    @martin_quarto 7 หลายเดือนก่อน

    Incredible work!!
    perfect.

  • @vasylarsenii4800
    @vasylarsenii4800 ปีที่แล้ว

    Phenomenal work! I'm very thankful to you for such a great content

  • @aadi.p4159
    @aadi.p4159 ปีที่แล้ว

    Nujabes music in the back and Watanabe characters to describe. I like this channel!

  • @originalandfunnyname8076
    @originalandfunnyname8076 ปีที่แล้ว +1

    awesome videos and I love the graphics, nice to see some of my favorite anime characters while studying linear algebra ;)

  • @139-b7j
    @139-b7j 4 หลายเดือนก่อน +1

    Projection matrices are idempotent matrices. What you considered are orthogonal projection matrices i.e., symmetric idempotent matrices. Orthogonality requires an inner product but general projectors exist in every vector space not just inner product spaces.

  • @XRobotexEditz
    @XRobotexEditz 5 วันที่ผ่านมา

    excellent, why is this channel not producing more videos like these.

  • @drxyd
    @drxyd ปีที่แล้ว +1

    Nujabes = Chefs kiss.

  • @jsutinbibber9508
    @jsutinbibber9508 ปีที่แล้ว

    Love the detail of the least squares normal equation when talking about the data matrix (10:46)😂😹

  • @ehza
    @ehza 7 หลายเดือนก่อน

    This is so good.

  • @frankfeng3737
    @frankfeng3737 ปีที่แล้ว

    very clear. like it very much. Thanks.

  • @emteiks
    @emteiks 9 หลายเดือนก่อน +2

    "Unfortunately no one can be told what the Matrix is" - Morpheus

    • @xxxq1460
      @xxxq1460 7 หลายเดือนก่อน +1

      “- you have to see it for yourself.”

  • @jarthur8428
    @jarthur8428 ปีที่แล้ว

    Amaizing content!!!!!!!!!!

  • @duopleis
    @duopleis 10 หลายเดือนก่อน

    sublime

  • @davidmurphy563
    @davidmurphy563 10 หลายเดือนก่อน

    Seriously, you're going from basic visualisation to spectral decomposition I'm the second vid?! Brave man.
    I don't mind you skipping Gaussian elimination but i do think you should have shown what a linear combination is. Also independent and dependent bases.
    Was a lovely video though and, like you, I prefer the geometric interpretation.

  • @chibutza9092
    @chibutza9092 ปีที่แล้ว

    these are wonderful videos!

  • @adrienloridan
    @adrienloridan 4 หลายเดือนก่อน

    Long live the king

  • @the.afronautz
    @the.afronautz 5 หลายเดือนก่อน

    Using cowboy bebop to teach linear algebra is something i didn’t know i needed

  • @APaleDot
    @APaleDot ปีที่แล้ว +29

    It's not true that all orthogonal matrices represent rotations. Some orthogonal matrices are reflections. Specifically, orthogonal matrices with determinant = 1 are rotations, and orthogonal matrices with determinant = -1 are reflections.

    • @mb59621
      @mb59621 ปีที่แล้ว +1

      A reflection is a rotation too , right ?

    • @APaleDot
      @APaleDot ปีที่แล้ว +2

      @@mb59621
      I wouldn't say so. A reflection inverts the orientation of the space, hence the negative determinant, whereas a rotation does not.
      Reflections are also their own inverse. Applying a reflection twice lands you back where you started, whereas it doesn't with most rotations.
      Since orthogonal matrices are defined as those with an inverse equal to its transpose, this means that the transpose of a reflection matrix is equal to itself (since it is its own inverse). Therefore, reflection matrices are symmetric across their main diagonal (taking the transpose doesn't change the matrix), whereas most rotation matrices are not.

    • @mb59621
      @mb59621 ปีที่แล้ว

      @@APaleDot good points to ponder while still learning the subject. At first I thought reflection is just a rotation about the normal , but ty for your reply , i found an inaccuracy in my intuition that a single rotation matrix built on this principle cannot reflect anything more than 1 point ! Which is what makes reflection matrices a bit unique.

    • @somnathroy9956
      @somnathroy9956 7 หลายเดือนก่อน

      ​@@mb59621 a reflection is a discrete transformation whereas rotation is the sum of infinitesimal transformations.

  • @pmccarthy001
    @pmccarthy001 ปีที่แล้ว

    These videos, and other visualization videos of a similar nature, are very helpful in understanding much of underlying concepts. One thing, however... is it possible to perform some spell checking within the visualizations themselves? Sometimes the misspellings diminish the impact of the video. Is spell checking within the visualizations difficult, or is it difficult to correct the visualizations after a misspelling is detected later in the production process? Anyway, good work.

  • @rndtnt
    @rndtnt ปีที่แล้ว

    brilliant videos, thanks a lot

  • @Hans_Magnusson
    @Hans_Magnusson 7 หลายเดือนก่อน

    0:42 you can always work out the equations and it will be quite apparent what is going on!

  • @zpocrm
    @zpocrm 7 หลายเดือนก่อน

    Thank you for sharing your video. Wish you health and wealth.

  • @yolamontalvan9502
    @yolamontalvan9502 9 หลายเดือนก่อน

    Thank you for your information. Thanks for telling us about Manim. I want to make videos to teach 7 years old kids math with animation.

  • @jasonmengsg
    @jasonmengsg ปีที่แล้ว +4

    Is that a reference to 二向箔 :)

  • @zeb4827
    @zeb4827 11 หลายเดือนก่อน +2

    7:01 Death's end reference?

  • @NaaneVinu
    @NaaneVinu หลายเดือนก่อน

    I wish you could also do the same for Statistics and calculus topics. What can ML/AI/DS students ask for?

  • @sathish297
    @sathish297 6 หลายเดือนก่อน +1

    I asked ChatGpt and it could not compete with this guy's videos. This is Gold. Whoever did these videos should share their name. A great honour beholds them. 🎉❤

  • @hubertmarty807
    @hubertmarty807 2 ปีที่แล้ว +1

    Great great great

  • @hatimaithammou9609
    @hatimaithammou9609 2 ปีที่แล้ว +3

    Orthonormal

  • @anonynous_math_person
    @anonynous_math_person 6 วันที่ผ่านมา

    great video but here is one error/correction:
    at 3:16 it is stated that orthogonal matrices produce pure rotations with "no reflection" - this is in fact false - orthogonal matrices can indeed produce reflections. The defining property of an orthogonal matrix is U^T U = UU^T = I; check this property for any reflection matrix and you will find that it is satisfied. Orthogonal matrices can produce both rotations and reflections. Note that in 2D, a product of two reflection matrices is also a rotation matrix.

    • @anonynous_math_person
      @anonynous_math_person 6 วันที่ผ่านมา

      in case anyone is wondering, the subset of orthogonal matrices that produce pure rotations (not reflections) are those that have determinant(U) = +1 (and with -1 a reflection is additionally involved in general). for orthogonal matrices the determinant is always +/- 1 so this covers all cases.

  • @AhmedSuhaib-i2s
    @AhmedSuhaib-i2s ปีที่แล้ว

    vsauce music was a nice touch!

  • @noitnettaattention
    @noitnettaattention ปีที่แล้ว +3

    how you made a [ -sqrt(2)/2, sqrt(2)/2 ] into unit vector remains complete mystery to me....

    • @rhaegartargaryen9047
      @rhaegartargaryen9047 ปีที่แล้ว +1

      i was stuck there too. can somebody explain this to me

    • @pedrofigueiredo1936
      @pedrofigueiredo1936 ปีที่แล้ว

      @noitnettaattention @rhaegartargaryen0947 basically what he is saying is that for a vector ( column of the matrix) to be a unit vector then it needs to have a module of 1. The module of a vector is just like doing a Pythagoras theorem with x and y to find the hypothenuse. this said, generally people don't go that far and just use the following formula: module = sqrt(x^2 + y^2). the module of the vector is therefore sqrt(1/2+1/2) = sqrt(1) = 1 thus making it a unit vector.
      this vector is very commonly seen on many applications since it has a simple 45º angle with the axis but any vector you can imagine that goes from the origin to a radius 1 circumference really qualifies as a unit vector (in R^2, 2 dimensions).
      What he wants to explain with this is that there can be matrixes that have two unit vectors, but to have them orthogonal is yet another important and distinct characteristic that he shows some seconds after.
      The good thing about the orthogonal unit vectors is that they are called "eigenvectors" and together with "eigenvalues" they will set a new set of axis for this transformation, as if the whole original axis is being rotated, as to have two perpendicular axis in a 2D space you can basically say that they are just some rotation or inversion of the original two axis.
      Hope I helped!
      Cheers

  • @kkounal2175
    @kkounal2175 3 หลายเดือนก่อน

    What do you use to visualise the transformations?

  • @woowooNeedsFaith
    @woowooNeedsFaith 4 วันที่ผ่านมา

    10:36 - From this on matrix is wrong. You seem to place numbers into the matrix quite randomly.

  • @arisweedler4703
    @arisweedler4703 2 หลายเดือนก่อน

    7:12 is the big reveal of dark forest

  • @SmaMux
    @SmaMux ปีที่แล้ว

    Nujabes ❤

  • @SRAVANAM_KEERTHANAM_SMARANAM
    @SRAVANAM_KEERTHANAM_SMARANAM ปีที่แล้ว

    Sir, What is Geometric interpretation of Trace of a Matrix. Kindly make a video.

  • @yazdcamping4520
    @yazdcamping4520 ปีที่แล้ว

    Bravooooooooo

  • @JunZhang-ralphjzhang
    @JunZhang-ralphjzhang ปีที่แล้ว +2

    I know this transformation, 3 bodies, reduce dimension 😁

  • @mathandrobotics
    @mathandrobotics 7 หลายเดือนก่อน

    at 2:07 , orthogonal matrices need not have a unit column vectors, only orthonormal matrix, anyway which is a subset of orthogonal matrix, has unit column vectors. Am i right? If not, please enlighten me. Thank you for the awesome video.

  • @ivanm1522
    @ivanm1522 ปีที่แล้ว

    Your videos are brilliant, they should be 1K times more popular!
    But why do you need jazz in the background, it just distracts? ).
    Thanks, helped me a lot!

  • @hanxiaolu6247
    @hanxiaolu6247 2 ปีที่แล้ว +3

    your content is amazing! but i feel you can probably rename your videos so they aren't discriminated by the algorithms!!!!

  • @zahraddeenabdullahi5899
    @zahraddeenabdullahi5899 2 หลายเดือนก่อน

    Woow...

  • @EigenA
    @EigenA 6 หลายเดือนก่อน

    For orthogonal matrices, I don’t believe that implies they have unit vectors for columns. Isn’t that reserved for orthonormal matrices?
    Just want to correct my understanding it it is wrong, great video!

    • @davidroux7987
      @davidroux7987 5 หลายเดือนก่อน

      yes I had the same thought. Too lazy to check now...

  • @ishangoel5794
    @ishangoel5794 7 หลายเดือนก่อน

    three body reference??/

  • @iskhezia
    @iskhezia 5 หลายเดือนก่อน

    Where is the captions 🥺

  • @akashssmenon
    @akashssmenon 5 หลายเดือนก่อน

    wait can someone tell what's special about projection matrices?

  • @ryan_chew97
    @ryan_chew97 3 หลายเดือนก่อน

    bro is the asian 3b1b

  • @Thepeacegames
    @Thepeacegames 2 ปีที่แล้ว +1

    nujabes + maths

  • @aakashyadav1589
    @aakashyadav1589 4 หลายเดือนก่อน

    background music too loud

  • @gk4539
    @gk4539 หลายเดือนก่อน

    3:13

  • @crispml
    @crispml ปีที่แล้ว

    brilliant!!

  • @BabaBoee5198
    @BabaBoee5198 2 หลายเดือนก่อน

    Where are you!!!

  • @snowwolf4148
    @snowwolf4148 ปีที่แล้ว

    How is root 2/2 , - root2/2 a unit vector

    • @APaleDot
      @APaleDot ปีที่แล้ว

      A unit vector is any vector with a length of 1. We can find the length of a vector using the Pythagorean theorem:
      (length)² = x² + y²
      = (sqrt(2) / 2)² + (-sqrt(2) / 2)²
      = (2 / 4) + (2 / 4)
      = 1
      The square root of 1 is just 1, so we conclude that the length of the vector is 1, a unit vector.

  • @peteryang1347
    @peteryang1347 7 หลายเดือนก่อน

    二向箔哈哈哈